ff219c7d8d
This means that floating views can be (partially) obscured by normal views if they are low in the stack, and that the "full" layout will work a little nicer as the focused view is always the top rendered.
314 lines
11 KiB
Zig
314 lines
11 KiB
Zig
// This file is part of river, a dynamic tiling wayland compositor.
|
|
//
|
|
// Copyright 2020 Isaac Freund
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
const build_options = @import("build_options");
|
|
const std = @import("std");
|
|
|
|
const c = @import("c.zig");
|
|
|
|
const Box = @import("Box.zig");
|
|
const LayerSurface = @import("LayerSurface.zig");
|
|
const Output = @import("Output.zig");
|
|
const Server = @import("Server.zig");
|
|
const View = @import("View.zig");
|
|
const ViewStack = @import("view_stack.zig").ViewStack;
|
|
|
|
const SurfaceRenderData = struct {
|
|
output: *const Output,
|
|
|
|
/// In output layout coordinates relative to the output
|
|
output_x: i32,
|
|
output_y: i32,
|
|
|
|
when: *c.timespec,
|
|
};
|
|
|
|
pub fn renderOutput(output: *Output) void {
|
|
const wlr_renderer = output.getRenderer();
|
|
const input_manager = output.root.server.input_manager;
|
|
|
|
var now: c.timespec = undefined;
|
|
_ = c.clock_gettime(c.CLOCK_MONOTONIC, &now);
|
|
|
|
// wlr_output_attach_render makes the OpenGL context current.
|
|
if (!c.wlr_output_attach_render(output.wlr_output, null)) {
|
|
return;
|
|
}
|
|
// The "effective" resolution can change if you rotate your outputs.
|
|
var width: c_int = undefined;
|
|
var height: c_int = undefined;
|
|
c.wlr_output_effective_resolution(output.wlr_output, &width, &height);
|
|
// Begin the renderer (calls glViewport and some other GL sanity checks)
|
|
c.wlr_renderer_begin(wlr_renderer, width, height);
|
|
|
|
const color = [_]f32{ 0.0, 0.16862745, 0.21176471, 1.0 };
|
|
c.wlr_renderer_clear(wlr_renderer, &color);
|
|
|
|
renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_BACKGROUND], &now);
|
|
renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_BOTTOM], &now);
|
|
|
|
// The first view in the list is "on top" so iterate in reverse.
|
|
var it = ViewStack(View).reverseIterator(output.views.last, output.current_focused_tags);
|
|
while (it.next()) |node| {
|
|
const view = &node.view;
|
|
|
|
// This check prevents a race condition when a frame is requested
|
|
// between mapping of a view and the first configure being handled.
|
|
if (view.current_box.width == 0 or view.current_box.height == 0) {
|
|
continue;
|
|
}
|
|
|
|
// Focused views are rendered on top of normal views, skip them for now
|
|
var seat_it = input_manager.seats.first;
|
|
if (while (seat_it) |seat_node| : (seat_it = seat_node.next) {
|
|
if (seat_node.data.focused_view == view) break true;
|
|
} else false) {
|
|
continue;
|
|
}
|
|
|
|
renderView(output.*, view, &now);
|
|
renderBorders(output.*, view, &now);
|
|
}
|
|
|
|
// Render focused views
|
|
it = ViewStack(View).reverseIterator(output.views.last, output.current_focused_tags);
|
|
while (it.next()) |node| {
|
|
const view = &node.view;
|
|
// This check prevents a race condition when a frame is requested
|
|
// between mapping of a view and the first configure being handled.
|
|
if (view.current_box.width == 0 or view.current_box.height == 0) {
|
|
continue;
|
|
}
|
|
|
|
// Skip unfocused views
|
|
var seat_it = input_manager.seats.first;
|
|
if (while (seat_it) |seat_node| : (seat_it = seat_node.next) {
|
|
if (seat_node.data.focused_view == view) break false;
|
|
} else true) {
|
|
continue;
|
|
}
|
|
renderView(output.*, view, &now);
|
|
renderBorders(output.*, view, &now);
|
|
}
|
|
|
|
// Render xwayland unmanged views
|
|
if (build_options.xwayland) {
|
|
renderXwaylandUnmanaged(output.*, &now);
|
|
}
|
|
|
|
renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_TOP], &now);
|
|
renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_OVERLAY], &now);
|
|
|
|
// Hardware cursors are rendered by the GPU on a separate plane, and can be
|
|
// moved around without re-rendering what's beneath them - which is more
|
|
// efficient. However, not all hardware supports hardware cursors. For this
|
|
// reason, wlroots provides a software fallback, which we ask it to render
|
|
// here. wlr_cursor handles configuring hardware vs software cursors for you,
|
|
// and this function is a no-op when hardware cursors are in use.
|
|
c.wlr_output_render_software_cursors(output.wlr_output, null);
|
|
|
|
// Conclude rendering and swap the buffers, showing the final frame
|
|
// on-screen.
|
|
c.wlr_renderer_end(wlr_renderer);
|
|
// TODO: handle failure
|
|
_ = c.wlr_output_commit(output.wlr_output);
|
|
}
|
|
|
|
/// Render all surfaces on the passed layer
|
|
fn renderLayer(output: Output, layer: std.TailQueue(LayerSurface), now: *c.timespec) void {
|
|
var it = layer.first;
|
|
while (it) |node| : (it = node.next) {
|
|
const layer_surface = &node.data;
|
|
var rdata = SurfaceRenderData{
|
|
.output = &output,
|
|
.output_x = layer_surface.box.x,
|
|
.output_y = layer_surface.box.y,
|
|
.when = now,
|
|
};
|
|
c.wlr_layer_surface_v1_for_each_surface(
|
|
layer_surface.wlr_layer_surface,
|
|
renderSurfaceIterator,
|
|
&rdata,
|
|
);
|
|
}
|
|
}
|
|
|
|
fn renderView(output: Output, view: *View, now: *c.timespec) void {
|
|
// If we have saved buffers, we are in the middle of a transaction
|
|
// and need to render those buffers until the transaction is complete.
|
|
if (view.saved_buffers.items.len != 0) {
|
|
for (view.saved_buffers.items) |saved_buffer|
|
|
renderTexture(
|
|
output,
|
|
saved_buffer.wlr_buffer.texture,
|
|
.{
|
|
.x = saved_buffer.box.x + view.current_box.x,
|
|
.y = saved_buffer.box.y + view.current_box.y,
|
|
.width = @intCast(c_int, saved_buffer.box.width),
|
|
.height = @intCast(c_int, saved_buffer.box.height),
|
|
},
|
|
saved_buffer.transform,
|
|
);
|
|
} else {
|
|
// Since there is no stashed buffer, we are not in the middle of
|
|
// a transaction and may simply render each toplevel surface.
|
|
var rdata = SurfaceRenderData{
|
|
.output = &output,
|
|
.output_x = view.current_box.x,
|
|
.output_y = view.current_box.y,
|
|
.when = now,
|
|
};
|
|
|
|
view.forEachSurface(renderSurfaceIterator, &rdata);
|
|
}
|
|
}
|
|
|
|
/// Render all xwayland unmanaged windows that appear on the output
|
|
fn renderXwaylandUnmanaged(output: Output, now: *c.timespec) void {
|
|
const root = output.root;
|
|
const output_box: *c.wlr_box = c.wlr_output_layout_get_box(
|
|
root.wlr_output_layout,
|
|
output.wlr_output,
|
|
);
|
|
|
|
var it = output.root.xwayland_unmanaged_views.first;
|
|
while (it) |node| : (it = node.next) {
|
|
const wlr_xwayland_surface = node.data.wlr_xwayland_surface;
|
|
|
|
var rdata = SurfaceRenderData{
|
|
.output = &output,
|
|
.output_x = wlr_xwayland_surface.x - output_box.x,
|
|
.output_y = wlr_xwayland_surface.y - output_box.y,
|
|
.when = now,
|
|
};
|
|
c.wlr_surface_for_each_surface(wlr_xwayland_surface.surface, renderSurfaceIterator, &rdata);
|
|
}
|
|
}
|
|
|
|
/// This function is passed to wlroots to render each surface during iteration
|
|
fn renderSurfaceIterator(
|
|
surface: ?*c.wlr_surface,
|
|
surface_x: c_int,
|
|
surface_y: c_int,
|
|
data: ?*c_void,
|
|
) callconv(.C) void {
|
|
const rdata = @ptrCast(*SurfaceRenderData, @alignCast(@alignOf(SurfaceRenderData), data));
|
|
|
|
renderTexture(
|
|
rdata.output.*,
|
|
c.wlr_surface_get_texture(surface),
|
|
.{
|
|
.x = rdata.output_x + surface_x,
|
|
.y = rdata.output_y + surface_y,
|
|
.width = surface.?.current.width,
|
|
.height = surface.?.current.height,
|
|
},
|
|
surface.?.current.transform,
|
|
);
|
|
|
|
c.wlr_surface_send_frame_done(surface, rdata.when);
|
|
}
|
|
|
|
/// Render the given texture at the given box, taking the scale and transform
|
|
/// of the output into account.
|
|
fn renderTexture(
|
|
output: Output,
|
|
wlr_texture: ?*c.wlr_texture,
|
|
wlr_box: c.wlr_box,
|
|
transform: c.wl_output_transform,
|
|
) void {
|
|
const texture = wlr_texture orelse return;
|
|
var box = wlr_box;
|
|
|
|
// Scale the box to the output's current scaling factor
|
|
scaleBox(&box, output.wlr_output.scale);
|
|
|
|
// wlr_matrix_project_box is a helper which takes a box with a desired
|
|
// x, y coordinates, width and height, and an output geometry, then
|
|
// prepares an orthographic projection and multiplies the necessary
|
|
// transforms to produce a model-view-projection matrix.
|
|
var matrix: [9]f32 = undefined;
|
|
const inverted = c.wlr_output_transform_invert(transform);
|
|
c.wlr_matrix_project_box(&matrix, &box, inverted, 0.0, &output.wlr_output.transform_matrix);
|
|
|
|
// This takes our matrix, the texture, and an alpha, and performs the actual
|
|
// rendering on the GPU.
|
|
_ = c.wlr_render_texture_with_matrix(output.getRenderer(), texture, &matrix, 1.0);
|
|
}
|
|
|
|
fn renderBorders(output: Output, view: *View, now: *c.timespec) void {
|
|
var border: Box = undefined;
|
|
const color = if (view.focused)
|
|
[_]f32{ 0.57647059, 0.63137255, 0.63137255, 1.0 } // Solarized base1
|
|
else
|
|
[_]f32{ 0.34509804, 0.43137255, 0.45882353, 1.0 }; // Solarized base01
|
|
const border_width = output.root.server.config.border_width;
|
|
|
|
// left and right, covering the corners as well
|
|
border.y = view.current_box.y - @intCast(i32, border_width);
|
|
border.width = border_width;
|
|
border.height = view.current_box.height + border_width * 2;
|
|
|
|
// left
|
|
border.x = view.current_box.x - @intCast(i32, border_width);
|
|
renderRect(output, border, color);
|
|
|
|
// right
|
|
border.x = view.current_box.x + @intCast(i32, view.current_box.width);
|
|
renderRect(output, border, color);
|
|
|
|
// top and bottom
|
|
border.x = view.current_box.x;
|
|
border.width = view.current_box.width;
|
|
border.height = border_width;
|
|
|
|
// top
|
|
border.y = view.current_box.y - @intCast(i32, border_width);
|
|
renderRect(output, border, color);
|
|
|
|
// bottom border
|
|
border.y = view.current_box.y + @intCast(i32, view.current_box.height);
|
|
renderRect(output, border, color);
|
|
}
|
|
|
|
fn renderRect(output: Output, box: Box, color: [4]f32) void {
|
|
var wlr_box = box.toWlrBox();
|
|
scaleBox(&wlr_box, output.wlr_output.scale);
|
|
c.wlr_render_rect(
|
|
output.getRenderer(),
|
|
&wlr_box,
|
|
&color,
|
|
&output.wlr_output.transform_matrix,
|
|
);
|
|
}
|
|
|
|
/// Scale a wlr_box, taking the possibility of fractional scaling into account.
|
|
fn scaleBox(box: *c.wlr_box, scale: f64) void {
|
|
box.x = @floatToInt(c_int, @round(@intToFloat(f64, box.x) * scale));
|
|
box.y = @floatToInt(c_int, @round(@intToFloat(f64, box.y) * scale));
|
|
box.width = scaleLength(box.width, box.x, scale);
|
|
box.height = scaleLength(box.height, box.x, scale);
|
|
}
|
|
|
|
/// Scales a width/height.
|
|
///
|
|
/// This might seem overly complex, but it needs to work for fractional scaling.
|
|
fn scaleLength(length: c_int, offset: c_int, scale: f64) c_int {
|
|
return @floatToInt(c_int, @round(@intToFloat(f64, offset + length) * scale) -
|
|
@round(@intToFloat(f64, offset) * scale));
|
|
}
|