// This file is part of river, a dynamic tiling wayland compositor. // // Copyright 2020 Isaac Freund // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . const build_options = @import("build_options"); const std = @import("std"); const c = @import("c.zig"); const Box = @import("Box.zig"); const LayerSurface = @import("LayerSurface.zig"); const Output = @import("Output.zig"); const Server = @import("Server.zig"); const View = @import("View.zig"); const ViewStack = @import("view_stack.zig").ViewStack; const SurfaceRenderData = struct { output: *const Output, /// In output layout coordinates relative to the output output_x: i32, output_y: i32, when: *c.timespec, }; pub fn renderOutput(output: *Output) void { const wlr_renderer = output.getRenderer(); const input_manager = output.root.server.input_manager; var now: c.timespec = undefined; _ = c.clock_gettime(c.CLOCK_MONOTONIC, &now); // wlr_output_attach_render makes the OpenGL context current. if (!c.wlr_output_attach_render(output.wlr_output, null)) { return; } // The "effective" resolution can change if you rotate your outputs. var width: c_int = undefined; var height: c_int = undefined; c.wlr_output_effective_resolution(output.wlr_output, &width, &height); // Begin the renderer (calls glViewport and some other GL sanity checks) c.wlr_renderer_begin(wlr_renderer, width, height); const color = [_]f32{ 0.0, 0.16862745, 0.21176471, 1.0 }; c.wlr_renderer_clear(wlr_renderer, &color); renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_BACKGROUND], &now); renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_BOTTOM], &now); // The first view in the list is "on top" so iterate in reverse. var it = ViewStack(View).reverseIterator(output.views.last, output.current_focused_tags); while (it.next()) |node| { const view = &node.view; // This check prevents a race condition when a frame is requested // between mapping of a view and the first configure being handled. if (view.current_box.width == 0 or view.current_box.height == 0) { continue; } // Focused views are rendered on top of normal views, skip them for now var seat_it = input_manager.seats.first; if (while (seat_it) |seat_node| : (seat_it = seat_node.next) { if (seat_node.data.focused_view == view) break true; } else false) { continue; } renderView(output.*, view, &now); renderBorders(output.*, view, &now); } // Render focused views it = ViewStack(View).reverseIterator(output.views.last, output.current_focused_tags); while (it.next()) |node| { const view = &node.view; // This check prevents a race condition when a frame is requested // between mapping of a view and the first configure being handled. if (view.current_box.width == 0 or view.current_box.height == 0) { continue; } // Skip unfocused views var seat_it = input_manager.seats.first; if (while (seat_it) |seat_node| : (seat_it = seat_node.next) { if (seat_node.data.focused_view == view) break false; } else true) { continue; } renderView(output.*, view, &now); renderBorders(output.*, view, &now); } // Render xwayland unmanged views if (build_options.xwayland) { renderXwaylandUnmanaged(output.*, &now); } renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_TOP], &now); renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_OVERLAY], &now); // Hardware cursors are rendered by the GPU on a separate plane, and can be // moved around without re-rendering what's beneath them - which is more // efficient. However, not all hardware supports hardware cursors. For this // reason, wlroots provides a software fallback, which we ask it to render // here. wlr_cursor handles configuring hardware vs software cursors for you, // and this function is a no-op when hardware cursors are in use. c.wlr_output_render_software_cursors(output.wlr_output, null); // Conclude rendering and swap the buffers, showing the final frame // on-screen. c.wlr_renderer_end(wlr_renderer); // TODO: handle failure _ = c.wlr_output_commit(output.wlr_output); } /// Render all surfaces on the passed layer fn renderLayer(output: Output, layer: std.TailQueue(LayerSurface), now: *c.timespec) void { var it = layer.first; while (it) |node| : (it = node.next) { const layer_surface = &node.data; var rdata = SurfaceRenderData{ .output = &output, .output_x = layer_surface.box.x, .output_y = layer_surface.box.y, .when = now, }; c.wlr_layer_surface_v1_for_each_surface( layer_surface.wlr_layer_surface, renderSurfaceIterator, &rdata, ); } } fn renderView(output: Output, view: *View, now: *c.timespec) void { // If we have saved buffers, we are in the middle of a transaction // and need to render those buffers until the transaction is complete. if (view.saved_buffers.items.len != 0) { for (view.saved_buffers.items) |saved_buffer| renderTexture( output, saved_buffer.wlr_buffer.texture, .{ .x = saved_buffer.box.x + view.current_box.x, .y = saved_buffer.box.y + view.current_box.y, .width = @intCast(c_int, saved_buffer.box.width), .height = @intCast(c_int, saved_buffer.box.height), }, saved_buffer.transform, ); } else { // Since there is no stashed buffer, we are not in the middle of // a transaction and may simply render each toplevel surface. var rdata = SurfaceRenderData{ .output = &output, .output_x = view.current_box.x, .output_y = view.current_box.y, .when = now, }; view.forEachSurface(renderSurfaceIterator, &rdata); } } /// Render all xwayland unmanaged windows that appear on the output fn renderXwaylandUnmanaged(output: Output, now: *c.timespec) void { const root = output.root; const output_box: *c.wlr_box = c.wlr_output_layout_get_box( root.wlr_output_layout, output.wlr_output, ); var it = output.root.xwayland_unmanaged_views.first; while (it) |node| : (it = node.next) { const wlr_xwayland_surface = node.data.wlr_xwayland_surface; var rdata = SurfaceRenderData{ .output = &output, .output_x = wlr_xwayland_surface.x - output_box.x, .output_y = wlr_xwayland_surface.y - output_box.y, .when = now, }; c.wlr_surface_for_each_surface(wlr_xwayland_surface.surface, renderSurfaceIterator, &rdata); } } /// This function is passed to wlroots to render each surface during iteration fn renderSurfaceIterator( surface: ?*c.wlr_surface, surface_x: c_int, surface_y: c_int, data: ?*c_void, ) callconv(.C) void { const rdata = @ptrCast(*SurfaceRenderData, @alignCast(@alignOf(SurfaceRenderData), data)); renderTexture( rdata.output.*, c.wlr_surface_get_texture(surface), .{ .x = rdata.output_x + surface_x, .y = rdata.output_y + surface_y, .width = surface.?.current.width, .height = surface.?.current.height, }, surface.?.current.transform, ); c.wlr_surface_send_frame_done(surface, rdata.when); } /// Render the given texture at the given box, taking the scale and transform /// of the output into account. fn renderTexture( output: Output, wlr_texture: ?*c.wlr_texture, wlr_box: c.wlr_box, transform: c.wl_output_transform, ) void { const texture = wlr_texture orelse return; var box = wlr_box; // Scale the box to the output's current scaling factor scaleBox(&box, output.wlr_output.scale); // wlr_matrix_project_box is a helper which takes a box with a desired // x, y coordinates, width and height, and an output geometry, then // prepares an orthographic projection and multiplies the necessary // transforms to produce a model-view-projection matrix. var matrix: [9]f32 = undefined; const inverted = c.wlr_output_transform_invert(transform); c.wlr_matrix_project_box(&matrix, &box, inverted, 0.0, &output.wlr_output.transform_matrix); // This takes our matrix, the texture, and an alpha, and performs the actual // rendering on the GPU. _ = c.wlr_render_texture_with_matrix(output.getRenderer(), texture, &matrix, 1.0); } fn renderBorders(output: Output, view: *View, now: *c.timespec) void { var border: Box = undefined; const color = if (view.focused) [_]f32{ 0.57647059, 0.63137255, 0.63137255, 1.0 } // Solarized base1 else [_]f32{ 0.34509804, 0.43137255, 0.45882353, 1.0 }; // Solarized base01 const border_width = output.root.server.config.border_width; // left and right, covering the corners as well border.y = view.current_box.y - @intCast(i32, border_width); border.width = border_width; border.height = view.current_box.height + border_width * 2; // left border.x = view.current_box.x - @intCast(i32, border_width); renderRect(output, border, color); // right border.x = view.current_box.x + @intCast(i32, view.current_box.width); renderRect(output, border, color); // top and bottom border.x = view.current_box.x; border.width = view.current_box.width; border.height = border_width; // top border.y = view.current_box.y - @intCast(i32, border_width); renderRect(output, border, color); // bottom border border.y = view.current_box.y + @intCast(i32, view.current_box.height); renderRect(output, border, color); } fn renderRect(output: Output, box: Box, color: [4]f32) void { var wlr_box = box.toWlrBox(); scaleBox(&wlr_box, output.wlr_output.scale); c.wlr_render_rect( output.getRenderer(), &wlr_box, &color, &output.wlr_output.transform_matrix, ); } /// Scale a wlr_box, taking the possibility of fractional scaling into account. fn scaleBox(box: *c.wlr_box, scale: f64) void { box.x = @floatToInt(c_int, @round(@intToFloat(f64, box.x) * scale)); box.y = @floatToInt(c_int, @round(@intToFloat(f64, box.y) * scale)); box.width = scaleLength(box.width, box.x, scale); box.height = scaleLength(box.height, box.x, scale); } /// Scales a width/height. /// /// This might seem overly complex, but it needs to work for fractional scaling. fn scaleLength(length: c_int, offset: c_int, scale: f64) c_int { return @floatToInt(c_int, @round(@intToFloat(f64, offset + length) * scale) - @round(@intToFloat(f64, offset) * scale)); }