Implement initial layer shell support
exclusive zones and popups are still TODO
This commit is contained in:
185
src/output.zig
185
src/output.zig
@ -1,12 +1,14 @@
|
||||
const std = @import("std");
|
||||
const c = @import("c.zig");
|
||||
|
||||
const Box = @import("box.zig").Box;
|
||||
const LayerSurface = @import("layer_surface.zig").LayerSurface;
|
||||
const Root = @import("root.zig").Root;
|
||||
const Server = @import("server.zig").Server;
|
||||
const View = @import("view.zig").View;
|
||||
const ViewStack = @import("view_stack.zig").ViewStack;
|
||||
|
||||
const RenderData = struct {
|
||||
const ViewRenderData = struct {
|
||||
output: *c.wlr_output,
|
||||
renderer: *c.wlr_renderer,
|
||||
view: *View,
|
||||
@ -15,11 +17,23 @@ const RenderData = struct {
|
||||
oy: f64,
|
||||
};
|
||||
|
||||
const LayerSurfaceRenderData = struct {
|
||||
output: *c.wlr_output,
|
||||
renderer: *c.wlr_renderer,
|
||||
layer_surface: *LayerSurface,
|
||||
when: *c.struct_timespec,
|
||||
ox: f64,
|
||||
oy: f64,
|
||||
};
|
||||
|
||||
pub const Output = struct {
|
||||
const Self = @This();
|
||||
|
||||
root: *Root,
|
||||
wlr_output: *c.wlr_output,
|
||||
|
||||
layers: [4]std.TailQueue(LayerSurface),
|
||||
|
||||
listen_frame: c.wl_listener,
|
||||
|
||||
pub fn init(self: *Self, root: *Root, wlr_output: *c.wlr_output) !void {
|
||||
@ -43,6 +57,10 @@ pub const Output = struct {
|
||||
self.root = root;
|
||||
self.wlr_output = wlr_output;
|
||||
|
||||
for (self.layers) |*layer| {
|
||||
layer.* = std.TailQueue(LayerSurface).init();
|
||||
}
|
||||
|
||||
// Sets up a listener for the frame notify event.
|
||||
self.listen_frame.notify = handleFrame;
|
||||
c.wl_signal_add(&wlr_output.events.frame, &self.listen_frame);
|
||||
@ -59,6 +77,91 @@ pub const Output = struct {
|
||||
c.wlr_output_create_global(wlr_output);
|
||||
}
|
||||
|
||||
/// Add a newly created layer surface to the output.
|
||||
pub fn addLayerSurface(self: *Self, wlr_layer_surface: *c.wlr_layer_surface_v1) !void {
|
||||
const layer = wlr_layer_surface.client_pending.layer;
|
||||
const node = try self.layers[@intCast(usize, @enumToInt(layer))].allocateNode(self.root.server.allocator);
|
||||
node.data.init(self, wlr_layer_surface, layer);
|
||||
self.layers[@intCast(usize, @enumToInt(layer))].append(node);
|
||||
self.arrangeLayers();
|
||||
}
|
||||
|
||||
/// Arrange all layer surfaces of this output and addjust the usable aread
|
||||
pub fn arrangeLayers(self: *Self) void {
|
||||
// TODO: handle exclusive zones
|
||||
const bounds = blk: {
|
||||
var width: c_int = undefined;
|
||||
var height: c_int = undefined;
|
||||
c.wlr_output_effective_resolution(self.wlr_output, &width, &height);
|
||||
break :blk Box{
|
||||
.x = 0,
|
||||
.y = 0,
|
||||
.width = @intCast(u32, width),
|
||||
.height = @intCast(u32, height),
|
||||
};
|
||||
};
|
||||
|
||||
for (self.layers) |layer| {
|
||||
self.arrangeLayer(layer, bounds);
|
||||
}
|
||||
|
||||
// TODO: handle seat focus
|
||||
}
|
||||
|
||||
/// Arrange the layer surfaces of a given layer
|
||||
fn arrangeLayer(self: *Self, layer: std.TailQueue(LayerSurface), bounds: Box) void {
|
||||
var it = layer.first;
|
||||
while (it) |node| : (it = node.next) {
|
||||
const layer_surface = &node.data;
|
||||
const current_state = layer_surface.wlr_layer_surface.current;
|
||||
|
||||
var new_box: Box = undefined;
|
||||
|
||||
// Horizontal alignment
|
||||
if (current_state.anchor & (@intCast(u32, c.ZWLR_LAYER_SURFACE_V1_ANCHOR_LEFT) |
|
||||
@intCast(u32, c.ZWLR_LAYER_SURFACE_V1_ANCHOR_RIGHT)) != 0 and
|
||||
current_state.desired_width == 0)
|
||||
{
|
||||
new_box.x = bounds.x + @intCast(i32, current_state.margin.left);
|
||||
new_box.width = bounds.width -
|
||||
(current_state.margin.left + current_state.margin.right);
|
||||
} else if (current_state.anchor & @intCast(u32, c.ZWLR_LAYER_SURFACE_V1_ANCHOR_LEFT) != 0) {
|
||||
new_box.x = bounds.x + @intCast(i32, current_state.margin.left);
|
||||
new_box.width = current_state.desired_width;
|
||||
} else if (current_state.anchor & @intCast(u32, c.ZWLR_LAYER_SURFACE_V1_ANCHOR_RIGHT) != 0) {
|
||||
new_box.x = bounds.x + @intCast(i32, bounds.width - current_state.desired_width -
|
||||
current_state.margin.right);
|
||||
new_box.width = current_state.desired_width;
|
||||
} else {
|
||||
new_box.x = bounds.x + @intCast(i32, bounds.width / 2 - current_state.desired_width / 2);
|
||||
new_box.width = current_state.desired_width;
|
||||
}
|
||||
|
||||
// Vertical alignment
|
||||
if (current_state.anchor & (@intCast(u32, c.ZWLR_LAYER_SURFACE_V1_ANCHOR_TOP) |
|
||||
@intCast(u32, c.ZWLR_LAYER_SURFACE_V1_ANCHOR_BOTTOM)) != 0 and
|
||||
current_state.desired_height == 0)
|
||||
{
|
||||
new_box.y = bounds.y + @intCast(i32, current_state.margin.top);
|
||||
new_box.height = bounds.height -
|
||||
(current_state.margin.top + current_state.margin.bottom);
|
||||
} else if (current_state.anchor & @intCast(u32, c.ZWLR_LAYER_SURFACE_V1_ANCHOR_TOP) != 0) {
|
||||
new_box.y = bounds.y + @intCast(i32, current_state.margin.top);
|
||||
new_box.height = current_state.desired_height;
|
||||
} else if (current_state.anchor & @intCast(u32, c.ZWLR_LAYER_SURFACE_V1_ANCHOR_BOTTOM) != 0) {
|
||||
new_box.y = bounds.y + @intCast(i32, bounds.height - current_state.desired_height -
|
||||
current_state.margin.bottom);
|
||||
new_box.height = current_state.desired_height;
|
||||
} else {
|
||||
new_box.y = bounds.y + @intCast(i32, bounds.height / 2 - current_state.desired_height / 2);
|
||||
new_box.height = current_state.desired_height;
|
||||
}
|
||||
|
||||
layer_surface.box = new_box;
|
||||
layer_surface.sendConfigure();
|
||||
}
|
||||
}
|
||||
|
||||
fn handleFrame(listener: ?*c.wl_listener, data: ?*c_void) callconv(.C) void {
|
||||
// This function is called every time an output is ready to display a frame,
|
||||
// generally at the output's refresh rate (e.g. 60Hz).
|
||||
@ -95,6 +198,9 @@ pub const Output = struct {
|
||||
&oy,
|
||||
);
|
||||
|
||||
output.renderLayer(output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_BACKGROUND], &now, ox, oy);
|
||||
output.renderLayer(output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_BOTTOM], &now, ox, oy);
|
||||
|
||||
// The first view in the list is "on top" so iterate in reverse.
|
||||
var it = ViewStack.reverseIterator(
|
||||
output.root.views.last,
|
||||
@ -110,6 +216,9 @@ pub const Output = struct {
|
||||
output.renderBorders(view, &now, ox, oy);
|
||||
}
|
||||
|
||||
output.renderLayer(output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_TOP], &now, ox, oy);
|
||||
output.renderLayer(output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_OVERLAY], &now, ox, oy);
|
||||
|
||||
// Hardware cursors are rendered by the GPU on a separate plane, and can be
|
||||
// moved around without re-rendering what's beneath them - which is more
|
||||
// efficient. However, not all hardware supports hardware cursors. For this
|
||||
@ -125,6 +234,74 @@ pub const Output = struct {
|
||||
_ = c.wlr_output_commit(output.wlr_output);
|
||||
}
|
||||
|
||||
/// Render all surfaces on the passed layer
|
||||
fn renderLayer(self: Self, layer: std.TailQueue(LayerSurface), now: *c.struct_timespec, ox: f64, oy: f64) void {
|
||||
var it = layer.first;
|
||||
while (it) |node| : (it = node.next) {
|
||||
const layer_surface = &node.data;
|
||||
var rdata = LayerSurfaceRenderData{
|
||||
.output = self.wlr_output,
|
||||
.renderer = self.root.server.wlr_renderer,
|
||||
.layer_surface = layer_surface,
|
||||
.when = now,
|
||||
.ox = ox,
|
||||
.oy = oy,
|
||||
};
|
||||
c.wlr_layer_surface_v1_for_each_surface(
|
||||
layer_surface.wlr_layer_surface,
|
||||
renderLayerSurface,
|
||||
&rdata,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
/// This function is called for every layer surface and popup that needs to be rendered.
|
||||
/// TODO: refactor this to reduce code duplication
|
||||
fn renderLayerSurface(_surface: ?*c.wlr_surface, sx: c_int, sy: c_int, data: ?*c_void) callconv(.C) void {
|
||||
// wlroots says this will never be null
|
||||
const surface = _surface.?;
|
||||
// This function is called for every surface that needs to be rendered.
|
||||
const rdata = @ptrCast(*LayerSurfaceRenderData, @alignCast(@alignOf(LayerSurfaceRenderData), data));
|
||||
const layer_surface = rdata.layer_surface;
|
||||
const output = rdata.output;
|
||||
|
||||
// We first obtain a wlr_texture, which is a GPU resource. wlroots
|
||||
// automatically handles negotiating these with the client. The underlying
|
||||
// resource could be an opaque handle passed from the client, or the client
|
||||
// could have sent a pixel buffer which we copied to the GPU, or a few other
|
||||
// means. You don't have to worry about this, wlroots takes care of it.
|
||||
const texture = c.wlr_surface_get_texture(surface);
|
||||
if (texture == null) {
|
||||
return;
|
||||
}
|
||||
|
||||
var box = c.wlr_box{
|
||||
.x = @floatToInt(c_int, rdata.ox) + layer_surface.box.x + sx,
|
||||
.y = @floatToInt(c_int, rdata.oy) + layer_surface.box.y + sy,
|
||||
.width = surface.current.width,
|
||||
.height = surface.current.height,
|
||||
};
|
||||
|
||||
// Scale the box to the output's current scaling factor
|
||||
scaleBox(&box, output.scale);
|
||||
|
||||
// wlr_matrix_project_box is a helper which takes a box with a desired
|
||||
// x, y coordinates, width and height, and an output geometry, then
|
||||
// prepares an orthographic projection and multiplies the necessary
|
||||
// transforms to produce a model-view-projection matrix.
|
||||
var matrix: [9]f32 = undefined;
|
||||
const transform = c.wlr_output_transform_invert(surface.current.transform);
|
||||
c.wlr_matrix_project_box(&matrix, &box, transform, 0.0, &output.transform_matrix);
|
||||
|
||||
// This takes our matrix, the texture, and an alpha, and performs the actual
|
||||
// rendering on the GPU.
|
||||
_ = c.wlr_render_texture_with_matrix(rdata.renderer, texture, &matrix, 1.0);
|
||||
|
||||
// This lets the client know that we've displayed that frame and it can
|
||||
// prepare another one now if it likes.
|
||||
c.wlr_surface_send_frame_done(surface, rdata.when);
|
||||
}
|
||||
|
||||
fn renderView(self: Self, view: *View, now: *c.struct_timespec, ox: f64, oy: f64) void {
|
||||
// If we have a stashed buffer, we are in the middle of a transaction
|
||||
// and need to render that buffer until the transaction is complete.
|
||||
@ -161,7 +338,7 @@ pub const Output = struct {
|
||||
} else {
|
||||
// Since there is no stashed buffer, we are not in the middle of
|
||||
// a transaction and may simply render each toplevel surface.
|
||||
var rdata = RenderData{
|
||||
var rdata = ViewRenderData{
|
||||
.output = self.wlr_output,
|
||||
.view = view,
|
||||
.renderer = self.root.server.wlr_renderer,
|
||||
@ -176,11 +353,11 @@ pub const Output = struct {
|
||||
}
|
||||
}
|
||||
|
||||
/// This function is called for every toplevel and popup surface that needs to be rendered.
|
||||
fn renderSurface(_surface: ?*c.wlr_surface, sx: c_int, sy: c_int, data: ?*c_void) callconv(.C) void {
|
||||
// wlroots says this will never be null
|
||||
const surface = _surface.?;
|
||||
// This function is called for every surface that needs to be rendered.
|
||||
const rdata = @ptrCast(*RenderData, @alignCast(@alignOf(RenderData), data));
|
||||
const rdata = @ptrCast(*ViewRenderData, @alignCast(@alignOf(ViewRenderData), data));
|
||||
const view = rdata.view;
|
||||
const output = rdata.output;
|
||||
|
||||
|
Reference in New Issue
Block a user