338 lines
13 KiB
Zig
338 lines
13 KiB
Zig
// This file is part of river, a dynamic tiling wayland compositor.
|
|
//
|
|
// Copyright 2020 Isaac Freund
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
const build_options = @import("build_options");
|
|
const std = @import("std");
|
|
|
|
const c = @import("c.zig");
|
|
const util = @import("util.zig");
|
|
|
|
const Box = @import("Box.zig");
|
|
const LayerSurface = @import("LayerSurface.zig");
|
|
const Output = @import("Output.zig");
|
|
const Server = @import("Server.zig");
|
|
const View = @import("View.zig");
|
|
const ViewStack = @import("view_stack.zig").ViewStack;
|
|
|
|
const SurfaceRenderData = struct {
|
|
output: *const Output,
|
|
|
|
/// In output layout coordinates relative to the output
|
|
output_x: i32,
|
|
output_y: i32,
|
|
|
|
when: *c.timespec,
|
|
|
|
opacity: f32,
|
|
};
|
|
|
|
pub fn renderOutput(output: *Output) void {
|
|
const config = &output.root.server.config;
|
|
const wlr_renderer = output.getRenderer();
|
|
|
|
var now: c.timespec = undefined;
|
|
_ = c.clock_gettime(c.CLOCK_MONOTONIC, &now);
|
|
|
|
// wlr_output_attach_render makes the OpenGL context current.
|
|
if (!c.wlr_output_attach_render(output.wlr_output, null)) return;
|
|
|
|
// The "effective" resolution can change if you rotate your outputs.
|
|
var width: c_int = undefined;
|
|
var height: c_int = undefined;
|
|
c.wlr_output_effective_resolution(output.wlr_output, &width, &height);
|
|
|
|
// Begin the renderer (calls glViewport and some other GL sanity checks)
|
|
c.wlr_renderer_begin(wlr_renderer, width, height);
|
|
|
|
// Find the first visible fullscreen view in the stack if there is one
|
|
var it = ViewStack(View).iter(output.views.first, .forward, output.current.tags, renderFilter);
|
|
const fullscreen_view = while (it.next()) |view| {
|
|
if (view.current.fullscreen) break view;
|
|
} else null;
|
|
|
|
// If we have a fullscreen view to render, render it.
|
|
if (fullscreen_view) |view| {
|
|
// Always clear with solid black for fullscreen
|
|
c.wlr_renderer_clear(wlr_renderer, &[_]f32{ 0, 0, 0, 1 });
|
|
renderView(output.*, view, &now);
|
|
if (build_options.xwayland) renderXwaylandUnmanaged(output.*, &now);
|
|
} else {
|
|
// No fullscreen view, so render normal layers/views
|
|
c.wlr_renderer_clear(wlr_renderer, &config.background_color);
|
|
|
|
renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_BACKGROUND], &now);
|
|
renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_BOTTOM], &now);
|
|
|
|
// The first view in the list is "on top" so iterate in reverse.
|
|
it = ViewStack(View).iter(output.views.last, .reverse, output.current.tags, renderFilter);
|
|
while (it.next()) |view| {
|
|
// Focused views are rendered on top of normal views, skip them for now
|
|
if (view.current.focus != 0) continue;
|
|
|
|
renderView(output.*, view, &now);
|
|
if (view.draw_borders) renderBorders(output.*, view, &now);
|
|
}
|
|
|
|
// Render focused views
|
|
it = ViewStack(View).iter(output.views.last, .reverse, output.current.tags, renderFilter);
|
|
while (it.next()) |view| {
|
|
// Skip unfocused views since we already rendered them
|
|
if (view.current.focus == 0) continue;
|
|
|
|
renderView(output.*, view, &now);
|
|
if (view.draw_borders) renderBorders(output.*, view, &now);
|
|
}
|
|
|
|
if (build_options.xwayland) renderXwaylandUnmanaged(output.*, &now);
|
|
|
|
renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_TOP], &now);
|
|
}
|
|
|
|
// The overlay layer is rendered in both fullscreen and normal cases
|
|
renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_OVERLAY], &now);
|
|
|
|
renderDragIcons(output.*, &now);
|
|
|
|
// Hardware cursors are rendered by the GPU on a separate plane, and can be
|
|
// moved around without re-rendering what's beneath them - which is more
|
|
// efficient. However, not all hardware supports hardware cursors. For this
|
|
// reason, wlroots provides a software fallback, which we ask it to render
|
|
// here. wlr_cursor handles configuring hardware vs software cursors for you,
|
|
// and this function is a no-op when hardware cursors are in use.
|
|
c.wlr_output_render_software_cursors(output.wlr_output, null);
|
|
|
|
// Conclude rendering and swap the buffers, showing the final frame
|
|
// on-screen.
|
|
c.wlr_renderer_end(wlr_renderer);
|
|
// TODO: handle failure
|
|
_ = c.wlr_output_commit(output.wlr_output);
|
|
}
|
|
|
|
fn renderFilter(view: *View, filter_tags: u32) bool {
|
|
// This check prevents a race condition when a frame is requested
|
|
// between mapping of a view and the first configure being handled.
|
|
if (view.current.box.width == 0 or view.current.box.height == 0)
|
|
return false;
|
|
return view.current.tags & filter_tags != 0;
|
|
}
|
|
|
|
/// Render all surfaces on the passed layer
|
|
fn renderLayer(output: Output, layer: std.TailQueue(LayerSurface), now: *c.timespec) void {
|
|
var it = layer.first;
|
|
while (it) |node| : (it = node.next) {
|
|
const layer_surface = &node.data;
|
|
var rdata = SurfaceRenderData{
|
|
.output = &output,
|
|
.output_x = layer_surface.box.x,
|
|
.output_y = layer_surface.box.y,
|
|
.when = now,
|
|
.opacity = 1.0,
|
|
};
|
|
c.wlr_layer_surface_v1_for_each_surface(
|
|
layer_surface.wlr_layer_surface,
|
|
renderSurfaceIterator,
|
|
&rdata,
|
|
);
|
|
}
|
|
}
|
|
|
|
fn renderView(output: Output, view: *View, now: *c.timespec) void {
|
|
// If we have saved buffers, we are in the middle of a transaction
|
|
// and need to render those buffers until the transaction is complete.
|
|
if (view.saved_buffers.items.len != 0) {
|
|
for (view.saved_buffers.items) |saved_buffer|
|
|
renderTexture(
|
|
output,
|
|
saved_buffer.wlr_client_buffer.texture,
|
|
.{
|
|
.x = saved_buffer.box.x + view.current.box.x - view.saved_surface_box.x,
|
|
.y = saved_buffer.box.y + view.current.box.y - view.saved_surface_box.y,
|
|
.width = @intCast(c_int, saved_buffer.box.width),
|
|
.height = @intCast(c_int, saved_buffer.box.height),
|
|
},
|
|
saved_buffer.transform,
|
|
view.opacity,
|
|
);
|
|
} else {
|
|
// Since there is no stashed buffer, we are not in the middle of
|
|
// a transaction and may simply render each toplevel surface.
|
|
var rdata = SurfaceRenderData{
|
|
.output = &output,
|
|
.output_x = view.current.box.x - view.surface_box.x,
|
|
.output_y = view.current.box.y - view.surface_box.y,
|
|
.when = now,
|
|
.opacity = view.opacity,
|
|
};
|
|
|
|
view.forEachSurface(renderSurfaceIterator, &rdata);
|
|
}
|
|
}
|
|
|
|
fn renderDragIcons(output: Output, now: *c.timespec) void {
|
|
const output_box = c.wlr_output_layout_get_box(output.root.wlr_output_layout, output.wlr_output);
|
|
|
|
var it = output.root.drag_icons.first;
|
|
while (it) |node| : (it = node.next) {
|
|
const drag_icon = &node.data;
|
|
|
|
var rdata = SurfaceRenderData{
|
|
.output = &output,
|
|
.output_x = @floatToInt(i32, drag_icon.seat.cursor.wlr_cursor.x) +
|
|
drag_icon.wlr_drag_icon.surface.*.sx - output_box.*.x,
|
|
.output_y = @floatToInt(i32, drag_icon.seat.cursor.wlr_cursor.y) +
|
|
drag_icon.wlr_drag_icon.surface.*.sy - output_box.*.y,
|
|
.when = now,
|
|
.opacity = 1.0,
|
|
};
|
|
c.wlr_surface_for_each_surface(drag_icon.wlr_drag_icon.surface, renderSurfaceIterator, &rdata);
|
|
}
|
|
}
|
|
|
|
/// Render all xwayland unmanaged windows that appear on the output
|
|
fn renderXwaylandUnmanaged(output: Output, now: *c.timespec) void {
|
|
const output_box = c.wlr_output_layout_get_box(output.root.wlr_output_layout, output.wlr_output);
|
|
|
|
var it = output.root.xwayland_unmanaged_views.first;
|
|
while (it) |node| : (it = node.next) {
|
|
const wlr_xwayland_surface = node.data.wlr_xwayland_surface;
|
|
|
|
var rdata = SurfaceRenderData{
|
|
.output = &output,
|
|
.output_x = wlr_xwayland_surface.x - output_box.*.x,
|
|
.output_y = wlr_xwayland_surface.y - output_box.*.y,
|
|
.when = now,
|
|
.opacity = 1.0,
|
|
};
|
|
c.wlr_surface_for_each_surface(wlr_xwayland_surface.surface, renderSurfaceIterator, &rdata);
|
|
}
|
|
}
|
|
|
|
/// This function is passed to wlroots to render each surface during iteration
|
|
fn renderSurfaceIterator(
|
|
surface: ?*c.wlr_surface,
|
|
surface_x: c_int,
|
|
surface_y: c_int,
|
|
data: ?*c_void,
|
|
) callconv(.C) void {
|
|
const rdata = util.voidCast(SurfaceRenderData, data.?);
|
|
|
|
renderTexture(
|
|
rdata.output.*,
|
|
c.wlr_surface_get_texture(surface),
|
|
.{
|
|
.x = rdata.output_x + surface_x,
|
|
.y = rdata.output_y + surface_y,
|
|
.width = surface.?.current.width,
|
|
.height = surface.?.current.height,
|
|
},
|
|
surface.?.current.transform,
|
|
rdata.opacity,
|
|
);
|
|
|
|
c.wlr_surface_send_frame_done(surface, rdata.when);
|
|
}
|
|
|
|
/// Render the given texture at the given box, taking the scale and transform
|
|
/// of the output into account.
|
|
fn renderTexture(
|
|
output: Output,
|
|
wlr_texture: ?*c.wlr_texture,
|
|
wlr_box: c.wlr_box,
|
|
transform: c.wl_output_transform,
|
|
opacity: f32,
|
|
) void {
|
|
const texture = wlr_texture orelse return;
|
|
var box = wlr_box;
|
|
|
|
// Scale the box to the output's current scaling factor
|
|
scaleBox(&box, output.wlr_output.scale);
|
|
|
|
// wlr_matrix_project_box is a helper which takes a box with a desired
|
|
// x, y coordinates, width and height, and an output geometry, then
|
|
// prepares an orthographic projection and multiplies the necessary
|
|
// transforms to produce a model-view-projection matrix.
|
|
var matrix: [9]f32 = undefined;
|
|
const inverted = c.wlr_output_transform_invert(transform);
|
|
c.wlr_matrix_project_box(&matrix, &box, inverted, 0.0, &output.wlr_output.transform_matrix);
|
|
|
|
// This takes our matrix, the texture, and an alpha, and performs the actual
|
|
// rendering on the GPU.
|
|
_ = c.wlr_render_texture_with_matrix(output.getRenderer(), texture, &matrix, opacity);
|
|
}
|
|
|
|
fn renderBorders(output: Output, view: *View, now: *c.timespec) void {
|
|
const config = &output.root.server.config;
|
|
const color = if (view.current.focus != 0) &config.border_color_focused else &config.border_color_unfocused;
|
|
const border_width = config.border_width;
|
|
const actual_box = if (view.saved_buffers.items.len != 0) view.saved_surface_box else view.surface_box;
|
|
|
|
var border: Box = undefined;
|
|
|
|
// left and right, covering the corners as well
|
|
border.y = view.current.box.y - @intCast(i32, border_width);
|
|
border.width = border_width;
|
|
border.height = actual_box.height + border_width * 2;
|
|
|
|
// left
|
|
border.x = view.current.box.x - @intCast(i32, border_width);
|
|
renderRect(output, border, color);
|
|
|
|
// right
|
|
border.x = view.current.box.x + @intCast(i32, actual_box.width);
|
|
renderRect(output, border, color);
|
|
|
|
// top and bottom
|
|
border.x = view.current.box.x;
|
|
border.width = actual_box.width;
|
|
border.height = border_width;
|
|
|
|
// top
|
|
border.y = view.current.box.y - @intCast(i32, border_width);
|
|
renderRect(output, border, color);
|
|
|
|
// bottom border
|
|
border.y = view.current.box.y + @intCast(i32, actual_box.height);
|
|
renderRect(output, border, color);
|
|
}
|
|
|
|
fn renderRect(output: Output, box: Box, color: *const [4]f32) void {
|
|
var wlr_box = box.toWlrBox();
|
|
scaleBox(&wlr_box, output.wlr_output.scale);
|
|
c.wlr_render_rect(
|
|
output.getRenderer(),
|
|
&wlr_box,
|
|
color,
|
|
&output.wlr_output.transform_matrix,
|
|
);
|
|
}
|
|
|
|
/// Scale a wlr_box, taking the possibility of fractional scaling into account.
|
|
fn scaleBox(box: *c.wlr_box, scale: f64) void {
|
|
box.x = @floatToInt(c_int, @round(@intToFloat(f64, box.x) * scale));
|
|
box.y = @floatToInt(c_int, @round(@intToFloat(f64, box.y) * scale));
|
|
box.width = scaleLength(box.width, box.x, scale);
|
|
box.height = scaleLength(box.height, box.x, scale);
|
|
}
|
|
|
|
/// Scales a width/height.
|
|
///
|
|
/// This might seem overly complex, but it needs to work for fractional scaling.
|
|
fn scaleLength(length: c_int, offset: c_int, scale: f64) c_int {
|
|
return @floatToInt(c_int, @round(@intToFloat(f64, offset + length) * scale) -
|
|
@round(@intToFloat(f64, offset) * scale));
|
|
}
|