river/src/server.zig
2020-04-04 16:51:02 +02:00

256 lines
10 KiB
Zig

const std = @import("std");
const c = @import("c.zig");
const util = @import("util.zig");
const DecorationManager = @import("decoration_manager.zig").DecorationManager;
const Output = @import("output.zig").Output;
const Root = @import("root.zig").Root;
const Seat = @import("seat.zig").Seat;
const View = @import("view.zig").View;
const ViewStack = @import("view_stack.zig").ViewStack;
pub const Server = struct {
const Self = @This();
allocator: *std.mem.Allocator,
wl_display: *c.wl_display,
wl_event_loop: *c.wl_event_loop,
wlr_backend: *c.wlr_backend,
wlr_renderer: *c.wlr_renderer,
wlr_xdg_shell: *c.wlr_xdg_shell,
decoration_manager: DecorationManager,
root: Root,
seat: Seat,
listen_new_output: c.wl_listener,
listen_new_xdg_surface: c.wl_listener,
pub fn init(self: *Self, allocator: *std.mem.Allocator) !void {
self.allocator = allocator;
// The Wayland display is managed by libwayland. It handles accepting
// clients from the Unix socket, managing Wayland globals, and so on.
self.wl_display = c.wl_display_create() orelse
return error.CantCreateWlDisplay;
errdefer c.wl_display_destroy(self.wl_display);
// Should never return null if the display was created successfully
self.wl_event_loop = c.wl_display_get_event_loop(self.wl_display) orelse
return error.CantGetEventLoop;
// The wlr_backend abstracts the input/output hardware. Autocreate chooses
// the best option based on the environment, for example DRM when run from
// a tty or wayland if WAYLAND_DISPLAY is set.
//
// This frees itself.when the wl_display is destroyed.
self.wlr_backend = c.river_wlr_backend_autocreate(self.wl_display) orelse
return error.CantCreateWlrBackend;
// If we don't provide a renderer, autocreate makes a GLES2 renderer for us.
// The renderer is responsible for defining the various pixel formats it
// supports for shared memory, this configures that for clients.
self.wlr_renderer = c.river_wlr_backend_get_renderer(self.wlr_backend) orelse
return error.CantGetWlrRenderer;
// TODO: Handle failure after https://github.com/swaywm/wlroots/pull/2080
c.wlr_renderer_init_wl_display(self.wlr_renderer, self.wl_display); // orelse
// return error.CantInitWlDisplay;
// These both free themselves when the wl_display is destroyed
_ = c.wlr_compositor_create(self.wl_display, self.wlr_renderer) orelse
return error.CantCreateWlrCompositor;
_ = c.wlr_data_device_manager_create(self.wl_display) orelse
return error.CantCreateWlrDataDeviceManager;
self.wlr_xdg_shell = c.wlr_xdg_shell_create(self.wl_display) orelse
return error.CantCreateWlrXdgShell;
try self.decoration_manager.init(self);
try self.root.init(self);
try self.seat.init(self);
// Register our listeners for new outputs and xdg_surfaces.
self.listen_new_output.notify = handleNewOutput;
c.wl_signal_add(&self.wlr_backend.events.new_output, &self.listen_new_output);
self.listen_new_xdg_surface.notify = handleNewXdgSurface;
c.wl_signal_add(&self.wlr_xdg_shell.events.new_surface, &self.listen_new_xdg_surface);
}
/// Free allocated memory and clean up
pub fn destroy(self: Self) void {
c.wl_display_destroy_clients(self.wl_display);
c.wl_display_destroy(self.wl_display);
self.root.destroy();
}
/// Create the socket, set WAYLAND_DISPLAY, and start the backend
pub fn start(self: Self) !void {
// Add a Unix socket to the Wayland display.
const socket = c.wl_display_add_socket_auto(self.wl_display) orelse
return error.CantAddSocket;
// Start the backend. This will enumerate outputs and inputs, become the DRM
// master, etc
if (!c.river_wlr_backend_start(self.wlr_backend)) {
return error.CantStartBackend;
}
// Set the WAYLAND_DISPLAY environment variable to our socket and run the
// startup command if requested. */
if (c.setenv("WAYLAND_DISPLAY", socket, 1) == -1) {
return error.CantSetEnv;
}
}
/// Enter the wayland event loop and block until the compositor is exited
pub fn run(self: Self) void {
c.wl_display_run(self.wl_display);
}
/// Handle all compositor keybindings
/// Note: this is a hacky initial implementation for testing and will be rewritten eventually
pub fn handleKeybinding(self: *Self, sym: c.xkb_keysym_t, modifiers: u32) bool {
// This function assumes the proper modifier is held down.
if (modifiers & @intCast(u32, c.WLR_MODIFIER_SHIFT) != 0) {
switch (sym) {
c.XKB_KEY_H => {
if (self.root.master_count < self.root.views.len) {
self.root.master_count += 1;
self.root.arrange();
}
},
c.XKB_KEY_L => {
if (self.root.master_count > 0) {
self.root.master_count -= 1;
self.root.arrange();
}
},
c.XKB_KEY_Return => {
// Spawn an instance of alacritty
// const argv = [_][]const u8{ "/bin/sh", "-c", "WAYLAND_DEBUG=1 alacritty" };
const argv = [_][]const u8{ "/bin/sh", "-c", "alacritty" };
const child = std.ChildProcess.init(&argv, std.heap.c_allocator) catch unreachable;
std.ChildProcess.spawn(child) catch unreachable;
},
c.XKB_KEY_1 => {
if (self.root.focused_view) |view| {
view.pending_tags = 1 << 0;
self.root.arrange();
}
},
c.XKB_KEY_2 => {
if (self.root.focused_view) |view| {
view.pending_tags = 1 << 1;
self.root.arrange();
}
},
c.XKB_KEY_3 => {
if (self.root.focused_view) |view| {
view.pending_tags = 1 << 2;
self.root.arrange();
}
},
c.XKB_KEY_4 => {
if (self.root.focused_view) |view| {
view.pending_tags = 1 << 3;
self.root.arrange();
}
},
c.XKB_KEY_5 => {
if (self.root.focused_view) |view| {
view.pending_tags = 1 << 4;
self.root.arrange();
}
},
c.XKB_KEY_6 => {
if (self.root.focused_view) |view| {
view.pending_tags = 1 << 5;
self.root.arrange();
}
},
else => return false,
}
} else {
switch (sym) {
c.XKB_KEY_e => c.wl_display_terminate(self.wl_display),
c.XKB_KEY_j => self.root.focusNextView(),
c.XKB_KEY_k => self.root.focusPrevView(),
c.XKB_KEY_h => {
if (self.root.master_factor > 0.05) {
self.root.master_factor = util.max(f64, self.root.master_factor - 0.05, 0.05);
self.root.arrange();
}
},
c.XKB_KEY_l => {
if (self.root.master_factor < 0.95) {
self.root.master_factor = util.min(f64, self.root.master_factor + 0.05, 0.95);
self.root.arrange();
}
},
c.XKB_KEY_Return => {
if (self.root.focused_view) |current_focus| {
const node = @fieldParentPtr(ViewStack.Node, "view", current_focus);
if (node != self.root.views.first) {
self.root.views.remove(node);
self.root.views.push(node);
self.root.arrange();
}
}
},
c.XKB_KEY_1 => {
self.root.pending_focused_tags = 1 << 0;
self.root.arrange();
},
c.XKB_KEY_2 => {
self.root.pending_focused_tags = 1 << 1;
self.root.arrange();
},
c.XKB_KEY_3 => {
self.root.pending_focused_tags = 1 << 2;
self.root.arrange();
},
c.XKB_KEY_4 => {
self.root.pending_focused_tags = 1 << 3;
self.root.arrange();
},
c.XKB_KEY_5 => {
self.root.pending_focused_tags = 1 << 4;
self.root.arrange();
},
c.XKB_KEY_6 => {
self.root.pending_focused_tags = 1 << 5;
self.root.arrange();
},
else => return false,
}
}
return true;
}
fn handleNewOutput(listener: ?*c.wl_listener, data: ?*c_void) callconv(.C) void {
const server = @fieldParentPtr(Server, "listen_new_output", listener.?);
const wlr_output = @ptrCast(*c.wlr_output, @alignCast(@alignOf(*c.wlr_output), data));
server.root.addOutput(wlr_output);
}
fn handleNewXdgSurface(listener: ?*c.wl_listener, data: ?*c_void) callconv(.C) void {
// This event is raised when wlr_xdg_shell receives a new xdg surface from a
// client, either a toplevel (application window) or popup.
const server = @fieldParentPtr(Server, "listen_new_xdg_surface", listener.?);
const wlr_xdg_surface = @ptrCast(*c.wlr_xdg_surface, @alignCast(@alignOf(*c.wlr_xdg_surface), data));
if (wlr_xdg_surface.role != c.enum_wlr_xdg_surface_role.WLR_XDG_SURFACE_ROLE_TOPLEVEL) {
// TODO: log
return;
}
// toplevel surfaces are tracked and managed by the root
server.root.addView(wlr_xdg_surface);
}
};