river/river/render.zig
2020-06-09 23:13:14 +02:00

315 lines
12 KiB
Zig

// This file is part of river, a dynamic tiling wayland compositor.
//
// Copyright 2020 Isaac Freund
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
const build_options = @import("build_options");
const std = @import("std");
const c = @import("c.zig");
const Box = @import("Box.zig");
const LayerSurface = @import("LayerSurface.zig");
const Output = @import("Output.zig");
const Server = @import("Server.zig");
const View = @import("View.zig");
const ViewStack = @import("view_stack.zig").ViewStack;
const SurfaceRenderData = struct {
output: *const Output,
/// In output layout coordinates relative to the output
output_x: i32,
output_y: i32,
when: *c.timespec,
};
pub fn renderOutput(output: *Output) void {
const wlr_renderer = output.getRenderer();
var now: c.timespec = undefined;
_ = c.clock_gettime(c.CLOCK_MONOTONIC, &now);
// wlr_output_attach_render makes the OpenGL context current.
if (!c.wlr_output_attach_render(output.wlr_output, null)) {
return;
}
// The "effective" resolution can change if you rotate your outputs.
var width: c_int = undefined;
var height: c_int = undefined;
c.wlr_output_effective_resolution(output.wlr_output, &width, &height);
// Begin the renderer (calls glViewport and some other GL sanity checks)
c.wlr_renderer_begin(wlr_renderer, width, height);
const color = [_]f32{ 0.0, 0.16862745, 0.21176471, 1.0 };
c.wlr_renderer_clear(wlr_renderer, &color);
renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_BACKGROUND], &now);
renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_BOTTOM], &now);
// The first view in the list is "on top" so iterate in reverse.
var it = ViewStack(View).reverseIterator(output.views.last, output.current_focused_tags);
while (it.next()) |node| {
const view = &node.view;
// This check prevents a race condition when a frame is requested
// between mapping of a view and the first configure being handled.
if (view.current_box.width == 0 or view.current_box.height == 0) {
continue;
}
// Floating views are rendered on top of normal views
if (view.floating) {
continue;
}
renderView(output.*, view, &now);
renderBorders(output.*, view, &now);
}
// Render floating views
it = ViewStack(View).reverseIterator(output.views.last, output.current_focused_tags);
while (it.next()) |node| {
const view = &node.view;
// This check prevents a race condition when a frame is requested
// between mapping of a view and the first configure being handled.
if (view.current_box.width == 0 or view.current_box.height == 0) {
continue;
}
if (!view.floating) {
continue;
}
renderView(output.*, view, &now);
renderBorders(output.*, view, &now);
}
// Render xwayland unmanged views
if (build_options.xwayland) {
renderXwaylandUnmanaged(output.*, &now);
}
renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_TOP], &now);
renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_OVERLAY], &now);
// Hardware cursors are rendered by the GPU on a separate plane, and can be
// moved around without re-rendering what's beneath them - which is more
// efficient. However, not all hardware supports hardware cursors. For this
// reason, wlroots provides a software fallback, which we ask it to render
// here. wlr_cursor handles configuring hardware vs software cursors for you,
// and this function is a no-op when hardware cursors are in use.
c.wlr_output_render_software_cursors(output.wlr_output, null);
// Conclude rendering and swap the buffers, showing the final frame
// on-screen.
c.wlr_renderer_end(wlr_renderer);
// TODO: handle failure
_ = c.wlr_output_commit(output.wlr_output);
}
/// Render all surfaces on the passed layer
fn renderLayer(output: Output, layer: std.TailQueue(LayerSurface), now: *c.timespec) void {
var it = layer.first;
while (it) |node| : (it = node.next) {
const layer_surface = &node.data;
var rdata = SurfaceRenderData{
.output = &output,
.output_x = layer_surface.box.x,
.output_y = layer_surface.box.y,
.when = now,
};
c.wlr_layer_surface_v1_for_each_surface(
layer_surface.wlr_layer_surface,
renderSurface,
&rdata,
);
}
}
fn renderView(output: Output, view: *View, now: *c.timespec) void {
// If we have saved buffers, we are in the middle of a transaction
// and need to render those buffers until the transaction is complete.
if (view.saved_buffers.items.len != 0) {
for (view.saved_buffers.items) |saved_buffer| {
var box = saved_buffer.box.toWlrBox();
box.x += view.current_box.x;
box.y += view.current_box.y;
// Scale the box to the output's current scaling factor
scaleBox(&box, output.wlr_output.scale);
var matrix: [9]f32 = undefined;
c.wlr_matrix_project_box(
&matrix,
&box,
.WL_OUTPUT_TRANSFORM_NORMAL,
0.0,
&output.wlr_output.transform_matrix,
);
// This takes our matrix, the texture, and an alpha, and performs the actual
// rendering on the GPU.
_ = c.wlr_render_texture_with_matrix(
output.getRenderer(),
saved_buffer.wlr_buffer.texture,
&matrix,
1.0,
);
}
} else {
// Since there is no stashed buffer, we are not in the middle of
// a transaction and may simply render each toplevel surface.
var rdata = SurfaceRenderData{
.output = &output,
.output_x = view.current_box.x,
.output_y = view.current_box.y,
.when = now,
};
view.forEachSurface(renderSurface, &rdata);
}
}
/// Render all xwayland unmanaged windows that appear on the output
fn renderXwaylandUnmanaged(output: Output, now: *c.timespec) void {
const root = output.root;
const output_box: *c.wlr_box = c.wlr_output_layout_get_box(
root.wlr_output_layout,
output.wlr_output,
);
var it = output.root.xwayland_unmanaged_views.first;
while (it) |node| : (it = node.next) {
const wlr_xwayland_surface = node.data.wlr_xwayland_surface;
var rdata = SurfaceRenderData{
.output = &output,
.output_x = wlr_xwayland_surface.x - output_box.x,
.output_y = wlr_xwayland_surface.y - output_box.y,
.when = now,
};
c.wlr_surface_for_each_surface(wlr_xwayland_surface.surface, renderSurface, &rdata);
}
}
/// This function is passed to wlroots to render each surface during iteration
fn renderSurface(
_surface: ?*c.wlr_surface,
surface_x: c_int,
surface_y: c_int,
data: ?*c_void,
) callconv(.C) void {
// wlroots says this will never be null
const surface = _surface.?;
const rdata = @ptrCast(*SurfaceRenderData, @alignCast(@alignOf(SurfaceRenderData), data));
const output = rdata.output;
const wlr_output = output.wlr_output;
// We first obtain a wlr_texture, which is a GPU resource. wlroots
// automatically handles negotiating these with the client. The underlying
// resource could be an opaque handle passed from the client, or the client
// could have sent a pixel buffer which we copied to the GPU, or a few other
// means. You don't have to worry about this, wlroots takes care of it.
const texture = c.wlr_surface_get_texture(surface);
if (texture == null) {
return;
}
var box = c.wlr_box{
.x = rdata.output_x + surface_x,
.y = rdata.output_y + surface_y,
.width = surface.current.width,
.height = surface.current.height,
};
// Scale the box to the output's current scaling factor
scaleBox(&box, wlr_output.scale);
// wlr_matrix_project_box is a helper which takes a box with a desired
// x, y coordinates, width and height, and an output geometry, then
// prepares an orthographic projection and multiplies the necessary
// transforms to produce a model-view-projection matrix.
var matrix: [9]f32 = undefined;
const transform = c.wlr_output_transform_invert(surface.current.transform);
c.wlr_matrix_project_box(&matrix, &box, transform, 0.0, &wlr_output.transform_matrix);
// This takes our matrix, the texture, and an alpha, and performs the actual
// rendering on the GPU.
_ = c.wlr_render_texture_with_matrix(output.getRenderer(), texture, &matrix, 1.0);
// This lets the client know that we've displayed that frame and it can
// prepare another one now if it likes.
c.wlr_surface_send_frame_done(surface, rdata.when);
}
fn renderBorders(output: Output, view: *View, now: *c.timespec) void {
var border: Box = undefined;
const color = if (view.focused)
[_]f32{ 0.57647059, 0.63137255, 0.63137255, 1.0 } // Solarized base1
else
[_]f32{ 0.34509804, 0.43137255, 0.45882353, 1.0 }; // Solarized base01
const border_width = output.root.server.config.border_width;
// left and right, covering the corners as well
border.y = view.current_box.y - @intCast(i32, border_width);
border.width = border_width;
border.height = view.current_box.height + border_width * 2;
// left
border.x = view.current_box.x - @intCast(i32, border_width);
renderRect(output, border, color);
// right
border.x = view.current_box.x + @intCast(i32, view.current_box.width);
renderRect(output, border, color);
// top and bottom
border.x = view.current_box.x;
border.width = view.current_box.width;
border.height = border_width;
// top
border.y = view.current_box.y - @intCast(i32, border_width);
renderRect(output, border, color);
// bottom border
border.y = view.current_box.y + @intCast(i32, view.current_box.height);
renderRect(output, border, color);
}
fn renderRect(output: Output, box: Box, color: [4]f32) void {
var wlr_box = box.toWlrBox();
scaleBox(&wlr_box, output.wlr_output.scale);
c.wlr_render_rect(
output.getRenderer(),
&wlr_box,
&color,
&output.wlr_output.transform_matrix,
);
}
/// Scale a wlr_box, taking the possibility of fractional scaling into account.
fn scaleBox(box: *c.wlr_box, scale: f64) void {
box.x = @floatToInt(c_int, @round(@intToFloat(f64, box.x) * scale));
box.y = @floatToInt(c_int, @round(@intToFloat(f64, box.y) * scale));
box.width = scaleLength(box.width, box.x, scale);
box.height = scaleLength(box.height, box.x, scale);
}
/// Scales a width/height.
///
/// This might seem overly complex, but it needs to work for fractional scaling.
fn scaleLength(length: c_int, offset: c_int, scale: f64) c_int {
return @floatToInt(c_int, @round(@intToFloat(f64, offset + length) * scale) -
@round(@intToFloat(f64, offset) * scale));
}