river/river/render.zig
2023-01-08 16:21:42 +01:00

434 lines
16 KiB
Zig

// This file is part of river, a dynamic tiling wayland compositor.
//
// Copyright 2020 The River Developers
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 3.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
const build_options = @import("build_options");
const std = @import("std");
const os = std.os;
const wlr = @import("wlroots");
const wl = @import("wayland").server.wl;
const pixman = @import("pixman");
const server = &@import("main.zig").server;
const util = @import("util.zig");
const LayerSurface = @import("LayerSurface.zig");
const Output = @import("Output.zig");
const Server = @import("Server.zig");
const View = @import("View.zig");
const ViewStack = @import("view_stack.zig").ViewStack;
const log = std.log.scoped(.render);
const SurfaceRenderData = struct {
output: *const Output,
/// In output layout coordinates relative to the output
output_x: i32,
output_y: i32,
when: *os.timespec,
};
/// The rendering order in this function must be kept in sync with Cursor.surfaceAt()
pub fn renderOutput(output: *Output) void {
var now: os.timespec = undefined;
os.clock_gettime(os.CLOCK.MONOTONIC, &now) catch @panic("CLOCK_MONOTONIC not supported");
var needs_frame: bool = undefined;
var damage_region: pixman.Region32 = undefined;
damage_region.init();
defer damage_region.deinit();
output.damage.?.attachRender(&needs_frame, &damage_region) catch {
log.err("failed to attach renderer", .{});
return;
};
if (!needs_frame) {
output.wlr_output.rollback();
return;
}
server.renderer.begin(@intCast(u32, output.wlr_output.width), @intCast(u32, output.wlr_output.height));
// In order to avoid flashing a blank black screen as the session is locked
// continue to render the unlocked session until either a lock surface is
// created or waiting for lock surfaces times out.
if (server.lock_manager.state == .locked or
(server.lock_manager.state == .waiting_for_lock_surfaces and output.lock_surface != null) or
server.lock_manager.state == .waiting_for_blank)
{
server.renderer.clear(&[_]f32{ 0, 0, 0, 1 }); // solid black
// TODO: this isn't frame-perfect if the output mode is changed. We
// could possibly delay rendering new frames after the mode change
// until the surface commits a buffer of the correct size.
if (output.lock_surface) |lock_surface| {
var rdata = SurfaceRenderData{
.output = output,
.output_x = 0,
.output_y = 0,
.when = &now,
};
lock_surface.wlr_lock_surface.surface.forEachSurface(
*SurfaceRenderData,
renderSurfaceIterator,
&rdata,
);
}
renderDragIcons(output, &now);
output.wlr_output.renderSoftwareCursors(null);
server.renderer.end();
output.wlr_output.commit() catch {
log.err("output commit failed for {s}", .{output.wlr_output.name});
return;
};
if (server.lock_manager.state == .locked) {
switch (output.lock_render_state) {
.unlocked, .pending_blank, .pending_lock_surface => unreachable,
.blanked, .lock_surface => {},
}
} else {
if (output.lock_surface == null) {
output.lock_render_state = .pending_blank;
} else {
output.lock_render_state = .pending_lock_surface;
}
}
return;
}
output.lock_render_state = .unlocked;
// Find the first visible fullscreen view in the stack if there is one
var it = ViewStack(View).iter(output.views.first, .forward, output.current.tags, renderFilter);
const fullscreen_view = while (it.next()) |view| {
if (view.current.fullscreen) break view;
} else null;
// If we have a fullscreen view to render, render it.
if (fullscreen_view) |view| {
// Always clear with solid black for fullscreen
server.renderer.clear(&[_]f32{ 0, 0, 0, 1 });
renderView(output, view, &now);
if (build_options.xwayland) renderXwaylandOverrideRedirect(output, &now);
} else {
// No fullscreen view, so render normal layers/views
server.renderer.clear(&server.config.background_color);
renderLayer(output, output.getLayer(.background).*, &now, .toplevels);
renderLayer(output, output.getLayer(.bottom).*, &now, .toplevels);
// The first view in the list is "on top" so always iterate in reverse.
// non-focused, non-floating views
it = ViewStack(View).iter(output.views.last, .reverse, output.current.tags, renderFilter);
while (it.next()) |view| {
if (view.current.focus != 0 or view.current.float) continue;
if (view.draw_borders) renderBorders(output, view);
renderView(output, view, &now);
}
// focused, non-floating views
it = ViewStack(View).iter(output.views.last, .reverse, output.current.tags, renderFilter);
while (it.next()) |view| {
if (view.current.focus == 0 or view.current.float) continue;
if (view.draw_borders) renderBorders(output, view);
renderView(output, view, &now);
}
// non-focused, floating views
it = ViewStack(View).iter(output.views.last, .reverse, output.current.tags, renderFilter);
while (it.next()) |view| {
if (view.current.focus != 0 or !view.current.float) continue;
if (view.draw_borders) renderBorders(output, view);
renderView(output, view, &now);
}
// focused, floating views
it = ViewStack(View).iter(output.views.last, .reverse, output.current.tags, renderFilter);
while (it.next()) |view| {
if (view.current.focus == 0 or !view.current.float) continue;
if (view.draw_borders) renderBorders(output, view);
renderView(output, view, &now);
}
if (build_options.xwayland) renderXwaylandOverrideRedirect(output, &now);
renderLayer(output, output.getLayer(.top).*, &now, .toplevels);
renderLayer(output, output.getLayer(.background).*, &now, .popups);
renderLayer(output, output.getLayer(.bottom).*, &now, .popups);
renderLayer(output, output.getLayer(.top).*, &now, .popups);
}
// The overlay layer is rendered in both fullscreen and normal cases
renderLayer(output, output.getLayer(.overlay).*, &now, .toplevels);
renderLayer(output, output.getLayer(.overlay).*, &now, .popups);
renderDragIcons(output, &now);
output.wlr_output.renderSoftwareCursors(null);
server.renderer.end();
output.wlr_output.commit() catch
log.err("output commit failed for {s}", .{output.wlr_output.name});
}
fn renderFilter(view: *View, filter_tags: u32) bool {
// This check prevents a race condition when a frame is requested
// between mapping of a view and the first configure being handled.
if (view.current.box.width == 0 or view.current.box.height == 0)
return false;
return view.current.tags & filter_tags != 0;
}
/// Render all surfaces on the passed layer
fn renderLayer(
output: *const Output,
layer: std.TailQueue(LayerSurface),
now: *os.timespec,
role: enum { toplevels, popups },
) void {
var it = layer.first;
while (it) |node| : (it = node.next) {
const layer_surface = &node.data;
var rdata = SurfaceRenderData{
.output = output,
.output_x = layer_surface.box.x,
.output_y = layer_surface.box.y,
.when = now,
};
switch (role) {
.toplevels => layer_surface.wlr_layer_surface.surface.forEachSurface(
*SurfaceRenderData,
renderSurfaceIterator,
&rdata,
),
.popups => layer_surface.wlr_layer_surface.forEachPopupSurface(
*SurfaceRenderData,
renderSurfaceIterator,
&rdata,
),
}
}
}
/// Render all surfaces in the view's surface tree, including subsurfaces and popups
fn renderView(output: *const Output, view: *View, now: *os.timespec) void {
// If we have saved buffers, we are in the middle of a transaction
// and need to render those buffers until the transaction is complete.
if (view.saved_buffers.items.len != 0) {
for (view.saved_buffers.items) |saved_buffer| {
const texture = saved_buffer.client_buffer.texture orelse continue;
renderTexture(
output,
texture,
.{
.x = saved_buffer.surface_box.x + view.current.box.x - view.saved_surface_box.x,
.y = saved_buffer.surface_box.y + view.current.box.y - view.saved_surface_box.y,
.width = saved_buffer.surface_box.width,
.height = saved_buffer.surface_box.height,
},
&saved_buffer.source_box,
saved_buffer.transform,
);
}
} else {
// Since there are no stashed buffers, we are not in the middle of
// a transaction and may simply render the most recent buffers provided
// by the client.
var rdata = SurfaceRenderData{
.output = output,
.output_x = view.current.box.x - view.surface_box.x,
.output_y = view.current.box.y - view.surface_box.y,
.when = now,
};
view.forEachSurface(*SurfaceRenderData, renderSurfaceIterator, &rdata);
}
}
fn renderDragIcons(output: *const Output, now: *os.timespec) void {
var output_box: wlr.Box = undefined;
server.root.output_layout.getBox(output.wlr_output, &output_box);
var it = server.input_manager.seats.first;
while (it) |node| : (it = node.next) {
const icon = node.data.drag_icon orelse continue;
var lx: f64 = undefined;
var ly: f64 = undefined;
switch (icon.wlr_drag_icon.drag.grab_type) {
.keyboard_pointer => {
lx = icon.seat.cursor.wlr_cursor.x;
ly = icon.seat.cursor.wlr_cursor.y;
},
.keyboard_touch => {
const touch_id = icon.wlr_drag_icon.drag.touch_id;
const point = icon.seat.cursor.touch_points.get(touch_id) orelse continue;
lx = point.lx;
ly = point.ly;
},
.keyboard => unreachable,
}
var rdata = SurfaceRenderData{
.output = output,
.output_x = @floatToInt(i32, lx) + icon.sx - output_box.x,
.output_y = @floatToInt(i32, ly) + icon.sy - output_box.y,
.when = now,
};
icon.wlr_drag_icon.surface.forEachSurface(*SurfaceRenderData, renderSurfaceIterator, &rdata);
}
}
/// Render all override redirect xwayland windows that appear on the output
fn renderXwaylandOverrideRedirect(output: *const Output, now: *os.timespec) void {
var output_box: wlr.Box = undefined;
server.root.output_layout.getBox(output.wlr_output, &output_box);
var it = server.root.xwayland_override_redirect_views.last;
while (it) |node| : (it = node.prev) {
const xwayland_surface = node.data.xwayland_surface;
var rdata = SurfaceRenderData{
.output = output,
.output_x = xwayland_surface.x - output_box.x,
.output_y = xwayland_surface.y - output_box.y,
.when = now,
};
xwayland_surface.surface.?.forEachSurface(*SurfaceRenderData, renderSurfaceIterator, &rdata);
}
}
/// This function is passed to wlroots to render each surface during iteration
fn renderSurfaceIterator(
surface: *wlr.Surface,
surface_x: c_int,
surface_y: c_int,
rdata: *SurfaceRenderData,
) void {
const texture = surface.getTexture() orelse return;
var source_box: wlr.FBox = undefined;
surface.getBufferSourceBox(&source_box);
renderTexture(
rdata.output,
texture,
.{
.x = rdata.output_x + surface_x,
.y = rdata.output_y + surface_y,
.width = surface.current.width,
.height = surface.current.height,
},
&source_box,
surface.current.transform,
);
surface.sendFrameDone(rdata.when);
}
/// Render the given texture at the given box, taking the scale and transform
/// of the output into account.
fn renderTexture(
output: *const Output,
texture: *wlr.Texture,
dest_box: wlr.Box,
source_box: *const wlr.FBox,
transform: wl.Output.Transform,
) void {
var box = dest_box;
// Scale the box to the output's current scaling factor
scaleBox(&box, output.wlr_output.scale);
// wlr_matrix_project_box is a helper which takes a box with a desired
// x, y coordinates, width and height, and an output geometry, then
// prepares an orthographic projection and multiplies the necessary
// transforms to produce a model-view-projection matrix.
var matrix: [9]f32 = undefined;
const inverted = wlr.Output.transformInvert(transform);
wlr.matrix.projectBox(&matrix, &box, inverted, 0.0, &output.wlr_output.transform_matrix);
// This takes our matrix, the texture, and an alpha, and performs the actual
// rendering on the GPU.
server.renderer.renderSubtextureWithMatrix(texture, source_box, &matrix, 1.0) catch return;
}
fn renderBorders(output: *const Output, view: *View) void {
const config = &server.config;
const color = blk: {
if (view.current.urgent) break :blk &config.border_color_urgent;
if (view.current.focus != 0) break :blk &config.border_color_focused;
break :blk &config.border_color_unfocused;
};
const actual_box = if (view.saved_buffers.items.len != 0) view.saved_surface_box else view.surface_box;
var border: wlr.Box = undefined;
// left and right, covering the corners as well
border.y = view.current.box.y - config.border_width;
border.width = config.border_width;
border.height = actual_box.height + config.border_width * 2;
// left
border.x = view.current.box.x - config.border_width;
renderRect(output, border, color);
// right
border.x = view.current.box.x + actual_box.width;
renderRect(output, border, color);
// top and bottom
border.x = view.current.box.x;
border.width = actual_box.width;
border.height = config.border_width;
// top
border.y = view.current.box.y - config.border_width;
renderRect(output, border, color);
// bottom border
border.y = view.current.box.y + actual_box.height;
renderRect(output, border, color);
}
fn renderRect(output: *const Output, box: wlr.Box, color: *const [4]f32) void {
var scaled = box;
scaleBox(&scaled, output.wlr_output.scale);
server.renderer.renderRect(&scaled, color, &output.wlr_output.transform_matrix);
}
/// Scale a wlr_box, taking the possibility of fractional scaling into account.
fn scaleBox(box: *wlr.Box, scale: f64) void {
box.width = scaleLength(box.width, box.x, scale);
box.height = scaleLength(box.height, box.y, scale);
box.x = @floatToInt(c_int, @round(@intToFloat(f64, box.x) * scale));
box.y = @floatToInt(c_int, @round(@intToFloat(f64, box.y) * scale));
}
/// Scales a width/height.
///
/// This might seem overly complex, but it needs to work for fractional scaling.
fn scaleLength(length: c_int, offset: c_int, scale: f64) c_int {
return @floatToInt(c_int, @round(@intToFloat(f64, offset + length) * scale) -
@round(@intToFloat(f64, offset) * scale));
}