const std = @import("std"); const c = @import("c.zig").c; const Output = struct { server: *Server, wlr_output: *c.wlr_output, listen_frame: c.wl_listener, pub fn init(server: *Server, wlr_output: *c.wlr_output) !@This() { // Some backends don't have modes. DRM+KMS does, and we need to set a mode // before we can use the output. The mode is a tuple of (width, height, // refresh rate), and each monitor supports only a specific set of modes. We // just pick the monitor's preferred mode, a more sophisticated compositor // would let the user configure it. // if not empty if (c.wl_list_empty(&wlr_output.*.modes) == 0) { const mode = c.wlr_output_preferred_mode(wlr_output); c.wlr_output_set_mode(wlr_output, mode); c.wlr_output_enable(wlr_output, true); if (!c.wlr_output_commit(wlr_output)) { return error.CantCommitWlrOutputMode; } } var output = @This(){ .server = server, .wlr_output = wlr_output, .listen_frame = c.wl_listener{ .link = undefined, .notify = handle_frame, }, }; // Sets up a listener for the frame notify event. c.wl_signal_add(&wlr_output.*.events.frame, &output.*.listen_frame); // Add the new output to the layout. The add_auto function arranges outputs // from left-to-right in the order they appear. A more sophisticated // compositor would let the user configure the arrangement of outputs in the // layout. c.wlr_output_layout_add_auto(server.output_layout, wlr_output); // Creating the global adds a wl_output global to the display, which Wayland // clients can see to find out information about the output (such as // DPI, scale factor, manufacturer, etc). c.wlr_output_create_global(wlr_output); return output; } fn handle_frame(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void { // This function is called every time an output is ready to display a frame, // generally at the output's refresh rate (e.g. 60Hz). var output = @fieldParentPtr(Output, "frame", listener); var renderer = output.*.server.*.renderer; var now: c.struct_timespec = undefined; _ = c.clock_gettime(c.CLOCK_MONOTONIC, &now); // wlr_output_attach_render makes the OpenGL context current. if (!c.wlr_output_attach_render(output.*.wlr_output, null)) { return; } // The "effective" resolution can change if you rotate your outputs. var width: c_int = undefined; var height: c_int = undefined; c.wlr_output_effective_resolution(output.*.wlr_output, &width, &height); // Begin the renderer (calls glViewport and some other GL sanity checks) c.wlr_renderer_begin(renderer, width, height); const color = [_]f32{ 0.3, 0.3, 0.3, 1.0 }; c.wlr_renderer_clear(renderer, &color); // Each subsequent window we render is rendered on top of the last. Because // our view list is ordered front-to-back, we iterate over it backwards. for (output.*.server.views.span()) |*view| { if (!view.*.mapped) { // An unmapped view should not be rendered. continue; } var rdata = RenderData{ .output = output.*.wlr_output, .view = view, .renderer = renderer, .when = &now, }; // This calls our render_surface function for each surface among the // xdg_surface's toplevel and popups. c.wlr_xdg_surface_for_each_surface(view.*.xdg_surface, render_surface, &rdata); } // Hardware cursors are rendered by the GPU on a separate plane, and can be // moved around without re-rendering what's beneath them - which is more // efficient. However, not all hardware supports hardware cursors. For this // reason, wlroots provides a software fallback, which we ask it to render // here. wlr_cursor handles configuring hardware vs software cursors for you, // and this function is a no-op when hardware cursors are in use. c.wlr_output_render_software_cursors(output.*.wlr_output, null); // Conclude rendering and swap the buffers, showing the final frame // on-screen. c.wlr_renderer_end(renderer); // TODO: handle failure _ = c.wlr_output_commit(output.*.wlr_output); } };