const std = @import("std"); const c = @import("c.zig"); const util = @import("util.zig"); const DecorationManager = @import("decoration_manager.zig").DecorationManager; const Output = @import("output.zig").Output; const Root = @import("root.zig").Root; const Seat = @import("seat.zig").Seat; const View = @import("view.zig").View; const ViewStack = @import("view_stack.zig").ViewStack; pub const Server = struct { const Self = @This(); allocator: *std.mem.Allocator, wl_display: *c.wl_display, wl_event_loop: *c.wl_event_loop, wlr_backend: *c.wlr_backend, wlr_renderer: *c.wlr_renderer, wlr_xdg_shell: *c.wlr_xdg_shell, decoration_manager: DecorationManager, root: Root, seat: Seat, listen_new_output: c.wl_listener, listen_new_xdg_surface: c.wl_listener, pub fn init(self: *Self, allocator: *std.mem.Allocator) !void { self.allocator = allocator; // The Wayland display is managed by libwayland. It handles accepting // clients from the Unix socket, managing Wayland globals, and so on. self.wl_display = c.wl_display_create() orelse return error.CantCreateWlDisplay; errdefer c.wl_display_destroy(self.wl_display); // Should never return null if the display was created successfully self.wl_event_loop = c.wl_display_get_event_loop(self.wl_display) orelse return error.CantGetEventLoop; // The wlr_backend abstracts the input/output hardware. Autocreate chooses // the best option based on the environment, for example DRM when run from // a tty or wayland if WAYLAND_DISPLAY is set. // // This frees itself.when the wl_display is destroyed. self.wlr_backend = c.river_wlr_backend_autocreate(self.wl_display) orelse return error.CantCreateWlrBackend; // If we don't provide a renderer, autocreate makes a GLES2 renderer for us. // The renderer is responsible for defining the various pixel formats it // supports for shared memory, this configures that for clients. self.wlr_renderer = c.river_wlr_backend_get_renderer(self.wlr_backend) orelse return error.CantGetWlrRenderer; // TODO: Handle failure after https://github.com/swaywm/wlroots/pull/2080 c.wlr_renderer_init_wl_display(self.wlr_renderer, self.wl_display); // orelse // return error.CantInitWlDisplay; // These both free themselves when the wl_display is destroyed _ = c.wlr_compositor_create(self.wl_display, self.wlr_renderer) orelse return error.CantCreateWlrCompositor; _ = c.wlr_data_device_manager_create(self.wl_display) orelse return error.CantCreateWlrDataDeviceManager; self.wlr_xdg_shell = c.wlr_xdg_shell_create(self.wl_display) orelse return error.CantCreateWlrXdgShell; try self.decoration_manager.init(self); try self.root.init(self); try self.seat.init(self); // Register our listeners for new outputs and xdg_surfaces. self.listen_new_output.notify = handleNewOutput; c.wl_signal_add(&self.wlr_backend.events.new_output, &self.listen_new_output); self.listen_new_xdg_surface.notify = handleNewXdgSurface; c.wl_signal_add(&self.wlr_xdg_shell.events.new_surface, &self.listen_new_xdg_surface); } /// Free allocated memory and clean up pub fn destroy(self: Self) void { c.wl_display_destroy_clients(self.wl_display); c.wl_display_destroy(self.wl_display); self.root.destroy(); } /// Create the socket, set WAYLAND_DISPLAY, and start the backend pub fn start(self: Self) !void { // Add a Unix socket to the Wayland display. const socket = c.wl_display_add_socket_auto(self.wl_display) orelse return error.CantAddSocket; // Start the backend. This will enumerate outputs and inputs, become the DRM // master, etc if (!c.river_wlr_backend_start(self.wlr_backend)) { return error.CantStartBackend; } // Set the WAYLAND_DISPLAY environment variable to our socket and run the // startup command if requested. */ if (c.setenv("WAYLAND_DISPLAY", socket, 1) == -1) { return error.CantSetEnv; } } /// Enter the wayland event loop and block until the compositor is exited pub fn run(self: Self) void { c.wl_display_run(self.wl_display); } /// Handle all compositor keybindings /// Note: this is a hacky initial implementation for testing and will be rewritten eventually pub fn handleKeybinding(self: *Self, sym: c.xkb_keysym_t, modifiers: u32) bool { if (modifiers & @intCast(u32, c.WLR_MODIFIER_LOGO) == 0) { return false; } if (modifiers & @intCast(u32, c.WLR_MODIFIER_SHIFT) != 0) { switch (sym) { c.XKB_KEY_H => { //if (self.root.master_count < self.root.views.len) { self.root.master_count += 1; self.root.arrange(); //} }, c.XKB_KEY_L => { //if (self.root.master_count > 0) { self.root.master_count -= 1; self.root.arrange(); //} }, c.XKB_KEY_Return => { // Spawn an instance of alacritty // const argv = [_][]const u8{ "/bin/sh", "-c", "WAYLAND_DEBUG=1 alacritty" }; const argv = [_][]const u8{ "/bin/sh", "-c", "alacritty" }; const child = std.ChildProcess.init(&argv, std.heap.c_allocator) catch unreachable; std.ChildProcess.spawn(child) catch unreachable; }, c.XKB_KEY_1 => { if (self.root.focused_view) |view| { view.pending_tags = 1 << 0; self.root.arrange(); } }, c.XKB_KEY_2 => { if (self.root.focused_view) |view| { view.pending_tags = 1 << 1; self.root.arrange(); } }, c.XKB_KEY_3 => { if (self.root.focused_view) |view| { view.pending_tags = 1 << 2; self.root.arrange(); } }, c.XKB_KEY_4 => { if (self.root.focused_view) |view| { view.pending_tags = 1 << 3; self.root.arrange(); } }, c.XKB_KEY_5 => { if (self.root.focused_view) |view| { view.pending_tags = 1 << 4; self.root.arrange(); } }, c.XKB_KEY_6 => { if (self.root.focused_view) |view| { view.pending_tags = 1 << 5; self.root.arrange(); } }, else => return false, } } else { switch (sym) { c.XKB_KEY_e => c.wl_display_terminate(self.wl_display), c.XKB_KEY_j => self.root.focusNextView(), c.XKB_KEY_k => self.root.focusPrevView(), c.XKB_KEY_h => { if (self.root.master_factor > 0.05) { self.root.master_factor = util.max(f64, self.root.master_factor - 0.05, 0.05); self.root.arrange(); } }, c.XKB_KEY_l => { if (self.root.master_factor < 0.95) { self.root.master_factor = util.min(f64, self.root.master_factor + 0.05, 0.95); self.root.arrange(); } }, c.XKB_KEY_Return => { if (self.root.focused_view) |current_focus| { const node = @fieldParentPtr(ViewStack.Node, "view", current_focus); if (node != self.root.views.first) { self.root.views.remove(node); self.root.views.push(node); self.root.arrange(); } } }, c.XKB_KEY_1 => { self.root.pending_focused_tags = 1 << 0; self.root.arrange(); }, c.XKB_KEY_2 => { self.root.pending_focused_tags = 1 << 1; self.root.arrange(); }, c.XKB_KEY_3 => { self.root.pending_focused_tags = 1 << 2; self.root.arrange(); }, c.XKB_KEY_4 => { self.root.pending_focused_tags = 1 << 3; self.root.arrange(); }, c.XKB_KEY_5 => { self.root.pending_focused_tags = 1 << 4; self.root.arrange(); }, c.XKB_KEY_6 => { self.root.pending_focused_tags = 1 << 5; self.root.arrange(); }, else => return false, } } return true; } fn handleNewOutput(listener: ?*c.wl_listener, data: ?*c_void) callconv(.C) void { const server = @fieldParentPtr(Server, "listen_new_output", listener.?); const wlr_output = @ptrCast(*c.wlr_output, @alignCast(@alignOf(*c.wlr_output), data)); server.root.addOutput(wlr_output); } fn handleNewXdgSurface(listener: ?*c.wl_listener, data: ?*c_void) callconv(.C) void { // This event is raised when wlr_xdg_shell receives a new xdg surface from a // client, either a toplevel (application window) or popup. const server = @fieldParentPtr(Server, "listen_new_xdg_surface", listener.?); const wlr_xdg_surface = @ptrCast(*c.wlr_xdg_surface, @alignCast(@alignOf(*c.wlr_xdg_surface), data)); if (wlr_xdg_surface.role != c.enum_wlr_xdg_surface_role.WLR_XDG_SURFACE_ROLE_TOPLEVEL) { // TODO: log return; } // toplevel surfaces are tracked and managed by the root server.root.addView(wlr_xdg_surface); } };