const std = @import("std"); const c = @import("c.zig").c; pub const Server = struct { wl_display: *c.wl_display, wlr_backend: *c.wlr_backend, wlr_renderer: *c.wlr_renderer, wlr_output_layout: *c.wlr_output_layout, outputs: std.ArrayList(Output), listen_new_output: c.wl_listener, wlr_xdg_shell: *c.wlr_xdg_shell, listen_new_xdg_surface: c.wl_listener, // Must stay ordered bottom to top views: std.ArrayList(View), pub fn init(allocator: *std.mem.Allocator) !@This() { var server = undefined; // The Wayland display is managed by libwayland. It handles accepting // clients from the Unix socket, manging Wayland globals, and so on. server.wl_display = c.wl_display_create() orelse return error.CantCreateWlDisplay; errdefer c.wl_display_destroy(server.wl_display); // The wlr_backend abstracts the input/output hardware. Autocreate chooses // the best option based on the environment, for example DRM when run from // a tty or wayland if WAYLAND_DISPLAY is set. // // This frees itself when the wl_display is destroyed. server.wlr_backend = c.wlr_backend_autocreate(server.wl_display) orelse return error.CantCreateWlrBackend; // If we don't provide a renderer, autocreate makes a GLES2 renderer for us. // The renderer is responsible for defining the various pixel formats it // supports for shared memory, this configures that for clients. server.wlr_renderer = c.wlr_backend_get_renderer(server.backend) orelse return error.CantGetWlrRenderer; c.wlr_renderer_init_wl_display(server.wlr_renderer, server.wl_display) orelse return error.CantInitWlDisplay; // These both free themselves when the wl_display is destroyed _ = c.wlr_compositor_create(server.wl_display, server.renderer) orelse return error.CantCreateWlrCompositor; _ = c.wlr_data_device_manager_create(server.wl_display) orelse return error.CantCreateWlrDataDeviceManager; // Create an output layout, which a wlroots utility for working with an // arrangement of screens in a physical layout. server.wlr_output_layout = c.wlr_output_layout_create() orelse return error.CantCreateWlrOutputLayout; errdefer c.wlr_output_layout_destroy(server.wlr_output_layout); server.outputs = std.ArrayList(Output).init(std.heap.c_allocator); // Setup a listener for new outputs server.listen_new_output = handle_new_output; c.wl_signal_add(&server.wlr_backend.*.events.new_output, &server.listen_new_output); // Set up our list of views and the xdg-shell. The xdg-shell is a Wayland // protocol which is used for application windows. // https://drewdevault.com/2018/07/29/Wayland-shells.html server.views = std.ArrayList(View).init(std.heap.c_allocator); server.wlr_xdg_shell = c.wlr_xdg_shell_create(server.wl_display) orelse return error.CantCreateWlrXdgShell; server.listen_new_xdg_surface.notify = handle_new_xdg_surface; c.wl_signal_add(&server.xdg_shell.*.events.new_surface, &server.listen_new_xdg_surface); return server; } /// Free allocated memory and clean up pub fn deinit(self: @This()) void { c.wl_display_destroy_clients(self.wl_display); c.wl_display_destroy(self.wl_display); c.wlr_output_layout_destroy(self.wlr_output_layout); } /// Create the socket, set WAYLAND_DISPLAY, and start the backend pub fn start(self: @This()) !void { // Add a Unix socket to the Wayland display. const socket = c.wl_display_add_socket_auto(self.wl_display) orelse return error.CantAddSocket; // Start the backend. This will enumerate outputs and inputs, become the DRM // master, etc if (!c.wlr_backend_start(self.wlr_backend)) { c.wlr_backend_destroy(self.wlr_backend); return error.CantStartBackend; } // Set the WAYLAND_DISPLAY environment variable to our socket and run the // startup command if requested. */ if (c.setenv("WAYLAND_DISPLAY", socket, 1) == -1) { return error.CantSetEnv; } } /// Enter the wayland event loop and block until the compositor is exited pub fn run(self: @This()) void { c.wl_display_run(server.wl_display); } pub fn handle_keybinding(self: *@This(), sym: c.xkb_keysym_t) bool { // Here we handle compositor keybindings. This is when the compositor is // processing keys, rather than passing them on to the client for its own // processing. // // This function assumes the proper modifier is held down. switch (sym) { c.XKB_KEY_Escape => c.wl_display_terminate(server.*.wl_display), c.XKB_KEY_F1 => { // Cycle to the next view //if (c.wl_list_length(&server.*.views) > 1) { // const current_view = @fieldParentPtr(View, "link", server.*.views.next); // const next_view = @fieldParentPtr(View, "link", current_view.*.link.next); // focus_view(next_view, next_view.*.xdg_surface.*.surface); // // Move the previous view to the end of the list // c.wl_list_remove(¤t_view.*.link); // c.wl_list_insert(server.*.views.prev, ¤t_view.*.link); //} }, else => return false, } return true; } fn handle_new_output(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void { var server = @fieldParentPtr(Server, "new_output", listener); var wlr_output = @ptrCast(*c.wlr_output, @alignCast(@alignOf(*c.wlr_output), data)); // TODO: Handle failure server.outputs.append(Output.init(server, wlr_output) catch unreachable); } fn handle_new_xdg_surface(listener: [*c]c.wl_listener, data: ?*c_void) callconv(.C) void { // This event is raised when wlr_xdg_shell receives a new xdg surface from a // client, either a toplevel (application window) or popup. var server = @fieldParentPtr(Server, "listen_new_xdg_surface", listener); var wlr_xdg_surface = @ptrCast(*c.wlr_xdg_surface, @alignCast(@alignOf(*c.wlr_xdg_surface), data)); if (wlr_xdg_surface.role != c.enum_wlr_xdg_surface_role.WLR_XDG_SURFACE_ROLE_TOPLEVEL) { return; } // Init a View to handle this surface server.*.views.append(View.init(server, wlr_xdg_surface)) catch unreachable; } /// Finds the top most view under the output layout coordinates lx, ly /// returns the view if found, and a pointer to the wlr_surface as well as the surface coordinates pub fn desktop_view_at(self: *@This(), lx: f64, ly: f64, surface: *?*c.wlr_surface, sx: *f64, sy: *f64) ?*View { for (server.*.views.span()) |*view| { if (view.is_at(lx, ly, surface, sx, sy)) { return view; } } return null; } };