const std = @import("std"); const c = @import("c.zig").c; const Server = @import("server.zig").Server; const View = @import("view.zig").View; const RenderData = struct { output: *c.wlr_output, renderer: *c.wlr_renderer, view: *View, when: *c.struct_timespec, }; pub const Output = struct { const Self = @This(); server: *Server, wlr_output: *c.wlr_output, listen_frame: c.wl_listener, pub fn init(self: *Self, server: *Server, wlr_output: *c.wlr_output) !void { // Some backends don't have modes. DRM+KMS does, and we need to set a mode // before we can use the output. The mode is a tuple of (width, height, // refresh rate), and each monitor supports only a specific set of modes. We // just pick the monitor's preferred mode, a more sophisticated compositor // would let the user configure it. // if not empty if (c.wl_list_empty(&wlr_output.modes) == 0) { const mode = c.wlr_output_preferred_mode(wlr_output); c.wlr_output_set_mode(wlr_output, mode); c.wlr_output_enable(wlr_output, true); if (!c.wlr_output_commit(wlr_output)) { return error.CantCommitWlrOutputMode; } } self.server = server; self.wlr_output = wlr_output; // Sets up a listener for the frame notify event. self.listen_frame.notify = handle_frame; c.wl_signal_add(&wlr_output.events.frame, &self.listen_frame); // Add the new output to the layout. The add_auto function arranges outputs // from left-to-right in the order they appear. A more sophisticated // compositor would let the user configure the arrangement of outputs in the // layout. c.wlr_output_layout_add_auto(server.wlr_output_layout, wlr_output); // Creating the global adds a wl_output global to the display, which Wayland // clients can see to find out information about the output (such as // DPI, scale factor, manufacturer, etc). c.wlr_output_create_global(wlr_output); } fn handle_frame(listener: ?*c.wl_listener, data: ?*c_void) callconv(.C) void { // This function is called every time an output is ready to display a frame, // generally at the output's refresh rate (e.g. 60Hz). const output = @fieldParentPtr(Output, "listen_frame", listener.?); const renderer = output.server.wlr_renderer; var now: c.struct_timespec = undefined; _ = c.clock_gettime(c.CLOCK_MONOTONIC, &now); // wlr_output_attach_render makes the OpenGL context current. if (!c.wlr_output_attach_render(output.wlr_output, null)) { return; } // The "effective" resolution can change if you rotate your outputs. var width: c_int = undefined; var height: c_int = undefined; c.wlr_output_effective_resolution(output.wlr_output, &width, &height); // Begin the renderer (calls glViewport and some other GL sanity checks) c.wlr_renderer_begin(renderer, width, height); const color = [_]f32{ 0.3, 0.3, 0.3, 1.0 }; c.wlr_renderer_clear(renderer, &color); // Each subsequent view is rendered on top of the last. // The first view in the list is "on top" so iterate in reverse. var it = output.server.views.last; while (it) |node| : (it = node.prev) { const view = &node.data; if (!view.mapped) { // An unmapped view should not be rendered. continue; } var rdata = RenderData{ .output = output.wlr_output, .view = view, .renderer = renderer, .when = &now, }; // This calls our render_surface function for each surface among the // xdg_surface's toplevel and popups. c.wlr_xdg_surface_for_each_surface(view.wlr_xdg_surface, render_surface, &rdata); } // Hardware cursors are rendered by the GPU on a separate plane, and can be // moved around without re-rendering what's beneath them - which is more // efficient. However, not all hardware supports hardware cursors. For this // reason, wlroots provides a software fallback, which we ask it to render // here. wlr_cursor handles configuring hardware vs software cursors for you, // and this function is a no-op when hardware cursors are in use. c.wlr_output_render_software_cursors(output.wlr_output, null); // Conclude rendering and swap the buffers, showing the final frame // on-screen. c.wlr_renderer_end(renderer); // TODO: handle failure _ = c.wlr_output_commit(output.wlr_output); } fn render_surface(opt_surface: ?*c.wlr_surface, sx: c_int, sy: c_int, data: ?*c_void) callconv(.C) void { // wlroots says this will never be null const surface = opt_surface.?; // This function is called for every surface that needs to be rendered. const rdata = @ptrCast(*RenderData, @alignCast(@alignOf(RenderData), data)); const view = rdata.view; const output = rdata.output; // We first obtain a wlr_texture, which is a GPU resource. wlroots // automatically handles negotiating these with the client. The underlying // resource could be an opaque handle passed from the client, or the client // could have sent a pixel buffer which we copied to the GPU, or a few other // means. You don't have to worry about this, wlroots takes care of it. const texture = c.wlr_surface_get_texture(surface); if (texture == null) { return; } // The view has a position in layout coordinates. If you have two displays, // one next to the other, both 1080p, a view on the rightmost display might // have layout coordinates of 2000,100. We need to translate that to // output-local coordinates, or (2000 - 1920). var ox: f64 = 0.0; var oy: f64 = 0.0; c.wlr_output_layout_output_coords(view.server.wlr_output_layout, output, &ox, &oy); ox += @intToFloat(f64, view.x + sx); oy += @intToFloat(f64, view.y + sy); // We also have to apply the scale factor for HiDPI outputs. This is only // part of the puzzle, TinyWL does not fully support HiDPI. const box = c.wlr_box{ .x = @floatToInt(c_int, ox * output.scale), .y = @floatToInt(c_int, oy * output.scale), .width = @floatToInt(c_int, @intToFloat(f32, surface.current.width) * output.scale), .height = @floatToInt(c_int, @intToFloat(f32, surface.current.height) * output.scale), }; // Those familiar with OpenGL are also familiar with the role of matricies // in graphics programming. We need to prepare a matrix to render the view // with. wlr_matrix_project_box is a helper which takes a box with a desired // x, y coordinates, width and height, and an output geometry, then // prepares an orthographic projection and multiplies the necessary // transforms to produce a model-view-projection matrix. // // Naturally you can do this any way you like, for example to make a 3D // compositor. var matrix: [9]f32 = undefined; const transform = c.wlr_output_transform_invert(surface.current.transform); c.wlr_matrix_project_box(&matrix, &box, transform, 0.0, &output.transform_matrix); // This takes our matrix, the texture, and an alpha, and performs the actual // rendering on the GPU. _ = c.wlr_render_texture_with_matrix(rdata.renderer, texture, &matrix, 1.0); // This lets the client know that we've displayed that frame and it can // prepare another one now if it likes. c.wlr_surface_send_frame_done(surface, rdata.when); } };