Initial atomic layout update implementation

This commit is contained in:
Isaac Freund
2020-03-26 21:32:30 +01:00
parent 6c12c23cdb
commit d787e2c2cc
6 changed files with 264 additions and 52 deletions

View File

@ -84,19 +84,12 @@ pub const Output = struct {
var it = output.root.views.last;
while (it) |node| : (it = node.prev) {
const view = &node.data;
// TODO: remove this check and move unmaped views back to unmaped TailQueue
if (!view.mapped) {
// An unmapped view should not be rendered.
continue;
}
var rdata = RenderData{
.output = output.wlr_output,
.view = view,
.renderer = renderer,
.when = &now,
};
// This calls our render_surface function for each surface among the
// xdg_surface's toplevel and popups.
c.wlr_xdg_surface_for_each_surface(view.wlr_xdg_surface, renderSurface, &rdata);
output.renderView(view, &now);
}
// Hardware cursors are rendered by the GPU on a separate plane, and can be
@ -114,9 +107,56 @@ pub const Output = struct {
_ = c.wlr_output_commit(output.wlr_output);
}
fn renderSurface(opt_surface: ?*c.wlr_surface, sx: c_int, sy: c_int, data: ?*c_void) callconv(.C) void {
fn renderView(self: *Self, view: *View, now: *c.struct_timespec) void {
// If we have a stashed buffer, we are in the middle of a transaction
// and need to render that buffer until the transaction is complete.
if (view.stashed_buffer) |buffer| {
var box = c.wlr_box{
.x = view.current_state.x,
.y = view.current_state.y,
.width = @intCast(c_int, view.current_state.width),
.height = @intCast(c_int, view.current_state.height),
};
// Scale the box to the output's current scaling factor
scaleBox(&box, self.wlr_output.scale);
var matrix: [9]f32 = undefined;
c.wlr_matrix_project_box(
&matrix,
&box,
c.enum_wl_output_transform.WL_OUTPUT_TRANSFORM_NORMAL,
0.0,
&self.wlr_output.transform_matrix,
);
// This takes our matrix, the texture, and an alpha, and performs the actual
// rendering on the GPU.
_ = c.wlr_render_texture_with_matrix(
self.root.server.wlr_renderer,
buffer.texture,
&matrix,
1.0,
);
} else {
// Since there is no stashed buffer, we are not in the middle of
// a transaction and may simply render each toplevel surface.
var rdata = RenderData{
.output = self.wlr_output,
.view = view,
.renderer = self.root.server.wlr_renderer,
.when = now,
};
// This calls our render_surface function for each surface among the
// xdg_surface's toplevel and popups.
c.wlr_xdg_surface_for_each_surface(view.wlr_xdg_surface, renderSurface, &rdata);
}
}
fn renderSurface(_surface: ?*c.wlr_surface, sx: c_int, sy: c_int, data: ?*c_void) callconv(.C) void {
// wlroots says this will never be null
const surface = opt_surface.?;
const surface = _surface.?;
// This function is called for every surface that needs to be rendered.
const rdata = @ptrCast(*RenderData, @alignCast(@alignOf(RenderData), data));
const view = rdata.view;
@ -139,27 +179,23 @@ pub const Output = struct {
var ox: f64 = 0.0;
var oy: f64 = 0.0;
c.wlr_output_layout_output_coords(view.root.wlr_output_layout, output, &ox, &oy);
ox += @intToFloat(f64, view.x + sx);
oy += @intToFloat(f64, view.y + sy);
ox += @intToFloat(f64, view.current_state.x + sx);
oy += @intToFloat(f64, view.current_state.y + sy);
// We also have to apply the scale factor for HiDPI outputs. This is only
// part of the puzzle, TinyWL does not fully support HiDPI.
const box = c.wlr_box{
.x = @floatToInt(c_int, ox * output.scale),
.y = @floatToInt(c_int, oy * output.scale),
.width = @floatToInt(c_int, @intToFloat(f32, surface.current.width) * output.scale),
.height = @floatToInt(c_int, @intToFloat(f32, surface.current.height) * output.scale),
var box = c.wlr_box{
.x = @floatToInt(c_int, ox),
.y = @floatToInt(c_int, oy),
.width = @intCast(c_int, surface.current.width),
.height = @intCast(c_int, surface.current.height),
};
// Those familiar with OpenGL are also familiar with the role of matricies
// in graphics programming. We need to prepare a matrix to render the view
// with. wlr_matrix_project_box is a helper which takes a box with a desired
// Scale the box to the output's current scaling factor
scaleBox(&box, output.scale);
// wlr_matrix_project_box is a helper which takes a box with a desired
// x, y coordinates, width and height, and an output geometry, then
// prepares an orthographic projection and multiplies the necessary
// transforms to produce a model-view-projection matrix.
//
// Naturally you can do this any way you like, for example to make a 3D
// compositor.
var matrix: [9]f32 = undefined;
const transform = c.wlr_output_transform_invert(surface.current.transform);
c.wlr_matrix_project_box(&matrix, &box, transform, 0.0, &output.transform_matrix);
@ -173,3 +209,19 @@ pub const Output = struct {
c.wlr_surface_send_frame_done(surface, rdata.when);
}
};
/// Scale a wlr_box, taking the possibility of fractional scaling into account.
fn scaleBox(box: *c.wlr_box, scale: f64) void {
box.x = @floatToInt(c_int, @round(@intToFloat(f64, box.x) * scale));
box.y = @floatToInt(c_int, @round(@intToFloat(f64, box.y) * scale));
box.width = scaleLength(box.width, box.x, scale);
box.height = scaleLength(box.height, box.x, scale);
}
/// Scales a width/height.
///
/// This might seem overly complex, but it needs to work for fractional scaling.
fn scaleLength(length: c_int, offset: c_int, scale: f64) c_int {
return @floatToInt(c_int, @round(@intToFloat(f64, offset + length) * scale) -
@round(@intToFloat(f64, offset) * scale));
}