Initial atomic layout update implementation
This commit is contained in:
104
src/output.zig
104
src/output.zig
@ -84,19 +84,12 @@ pub const Output = struct {
|
||||
var it = output.root.views.last;
|
||||
while (it) |node| : (it = node.prev) {
|
||||
const view = &node.data;
|
||||
// TODO: remove this check and move unmaped views back to unmaped TailQueue
|
||||
if (!view.mapped) {
|
||||
// An unmapped view should not be rendered.
|
||||
continue;
|
||||
}
|
||||
var rdata = RenderData{
|
||||
.output = output.wlr_output,
|
||||
.view = view,
|
||||
.renderer = renderer,
|
||||
.when = &now,
|
||||
};
|
||||
// This calls our render_surface function for each surface among the
|
||||
// xdg_surface's toplevel and popups.
|
||||
c.wlr_xdg_surface_for_each_surface(view.wlr_xdg_surface, renderSurface, &rdata);
|
||||
output.renderView(view, &now);
|
||||
}
|
||||
|
||||
// Hardware cursors are rendered by the GPU on a separate plane, and can be
|
||||
@ -114,9 +107,56 @@ pub const Output = struct {
|
||||
_ = c.wlr_output_commit(output.wlr_output);
|
||||
}
|
||||
|
||||
fn renderSurface(opt_surface: ?*c.wlr_surface, sx: c_int, sy: c_int, data: ?*c_void) callconv(.C) void {
|
||||
fn renderView(self: *Self, view: *View, now: *c.struct_timespec) void {
|
||||
// If we have a stashed buffer, we are in the middle of a transaction
|
||||
// and need to render that buffer until the transaction is complete.
|
||||
if (view.stashed_buffer) |buffer| {
|
||||
var box = c.wlr_box{
|
||||
.x = view.current_state.x,
|
||||
.y = view.current_state.y,
|
||||
.width = @intCast(c_int, view.current_state.width),
|
||||
.height = @intCast(c_int, view.current_state.height),
|
||||
};
|
||||
|
||||
// Scale the box to the output's current scaling factor
|
||||
scaleBox(&box, self.wlr_output.scale);
|
||||
|
||||
var matrix: [9]f32 = undefined;
|
||||
c.wlr_matrix_project_box(
|
||||
&matrix,
|
||||
&box,
|
||||
c.enum_wl_output_transform.WL_OUTPUT_TRANSFORM_NORMAL,
|
||||
0.0,
|
||||
&self.wlr_output.transform_matrix,
|
||||
);
|
||||
|
||||
// This takes our matrix, the texture, and an alpha, and performs the actual
|
||||
// rendering on the GPU.
|
||||
_ = c.wlr_render_texture_with_matrix(
|
||||
self.root.server.wlr_renderer,
|
||||
buffer.texture,
|
||||
&matrix,
|
||||
1.0,
|
||||
);
|
||||
} else {
|
||||
// Since there is no stashed buffer, we are not in the middle of
|
||||
// a transaction and may simply render each toplevel surface.
|
||||
var rdata = RenderData{
|
||||
.output = self.wlr_output,
|
||||
.view = view,
|
||||
.renderer = self.root.server.wlr_renderer,
|
||||
.when = now,
|
||||
};
|
||||
|
||||
// This calls our render_surface function for each surface among the
|
||||
// xdg_surface's toplevel and popups.
|
||||
c.wlr_xdg_surface_for_each_surface(view.wlr_xdg_surface, renderSurface, &rdata);
|
||||
}
|
||||
}
|
||||
|
||||
fn renderSurface(_surface: ?*c.wlr_surface, sx: c_int, sy: c_int, data: ?*c_void) callconv(.C) void {
|
||||
// wlroots says this will never be null
|
||||
const surface = opt_surface.?;
|
||||
const surface = _surface.?;
|
||||
// This function is called for every surface that needs to be rendered.
|
||||
const rdata = @ptrCast(*RenderData, @alignCast(@alignOf(RenderData), data));
|
||||
const view = rdata.view;
|
||||
@ -139,27 +179,23 @@ pub const Output = struct {
|
||||
var ox: f64 = 0.0;
|
||||
var oy: f64 = 0.0;
|
||||
c.wlr_output_layout_output_coords(view.root.wlr_output_layout, output, &ox, &oy);
|
||||
ox += @intToFloat(f64, view.x + sx);
|
||||
oy += @intToFloat(f64, view.y + sy);
|
||||
ox += @intToFloat(f64, view.current_state.x + sx);
|
||||
oy += @intToFloat(f64, view.current_state.y + sy);
|
||||
|
||||
// We also have to apply the scale factor for HiDPI outputs. This is only
|
||||
// part of the puzzle, TinyWL does not fully support HiDPI.
|
||||
const box = c.wlr_box{
|
||||
.x = @floatToInt(c_int, ox * output.scale),
|
||||
.y = @floatToInt(c_int, oy * output.scale),
|
||||
.width = @floatToInt(c_int, @intToFloat(f32, surface.current.width) * output.scale),
|
||||
.height = @floatToInt(c_int, @intToFloat(f32, surface.current.height) * output.scale),
|
||||
var box = c.wlr_box{
|
||||
.x = @floatToInt(c_int, ox),
|
||||
.y = @floatToInt(c_int, oy),
|
||||
.width = @intCast(c_int, surface.current.width),
|
||||
.height = @intCast(c_int, surface.current.height),
|
||||
};
|
||||
|
||||
// Those familiar with OpenGL are also familiar with the role of matricies
|
||||
// in graphics programming. We need to prepare a matrix to render the view
|
||||
// with. wlr_matrix_project_box is a helper which takes a box with a desired
|
||||
// Scale the box to the output's current scaling factor
|
||||
scaleBox(&box, output.scale);
|
||||
|
||||
// wlr_matrix_project_box is a helper which takes a box with a desired
|
||||
// x, y coordinates, width and height, and an output geometry, then
|
||||
// prepares an orthographic projection and multiplies the necessary
|
||||
// transforms to produce a model-view-projection matrix.
|
||||
//
|
||||
// Naturally you can do this any way you like, for example to make a 3D
|
||||
// compositor.
|
||||
var matrix: [9]f32 = undefined;
|
||||
const transform = c.wlr_output_transform_invert(surface.current.transform);
|
||||
c.wlr_matrix_project_box(&matrix, &box, transform, 0.0, &output.transform_matrix);
|
||||
@ -173,3 +209,19 @@ pub const Output = struct {
|
||||
c.wlr_surface_send_frame_done(surface, rdata.when);
|
||||
}
|
||||
};
|
||||
|
||||
/// Scale a wlr_box, taking the possibility of fractional scaling into account.
|
||||
fn scaleBox(box: *c.wlr_box, scale: f64) void {
|
||||
box.x = @floatToInt(c_int, @round(@intToFloat(f64, box.x) * scale));
|
||||
box.y = @floatToInt(c_int, @round(@intToFloat(f64, box.y) * scale));
|
||||
box.width = scaleLength(box.width, box.x, scale);
|
||||
box.height = scaleLength(box.height, box.x, scale);
|
||||
}
|
||||
|
||||
/// Scales a width/height.
|
||||
///
|
||||
/// This might seem overly complex, but it needs to work for fractional scaling.
|
||||
fn scaleLength(length: c_int, offset: c_int, scale: f64) c_int {
|
||||
return @floatToInt(c_int, @round(@intToFloat(f64, offset + length) * scale) -
|
||||
@round(@intToFloat(f64, offset) * scale));
|
||||
}
|
||||
|
Reference in New Issue
Block a user