Split river and riverctl directories
This commit is contained in:
315
river/render.zig
Normal file
315
river/render.zig
Normal file
@ -0,0 +1,315 @@
|
||||
// This file is part of river, a dynamic tiling wayland compositor.
|
||||
//
|
||||
// Copyright 2020 Isaac Freund
|
||||
//
|
||||
// This program is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
const build_options = @import("build_options");
|
||||
const std = @import("std");
|
||||
|
||||
const c = @import("c.zig");
|
||||
|
||||
const Box = @import("Box.zig");
|
||||
const LayerSurface = @import("LayerSurface.zig");
|
||||
const Output = @import("Output.zig");
|
||||
const Server = @import("Server.zig");
|
||||
const View = @import("View.zig");
|
||||
const ViewStack = @import("view_stack.zig").ViewStack;
|
||||
|
||||
const SurfaceRenderData = struct {
|
||||
output: *const Output,
|
||||
|
||||
/// In output layout coordinates relative to the output
|
||||
output_x: i32,
|
||||
output_y: i32,
|
||||
|
||||
when: *c.timespec,
|
||||
};
|
||||
|
||||
pub fn renderOutput(output: *Output) void {
|
||||
const wlr_renderer = output.getRenderer();
|
||||
|
||||
var now: c.timespec = undefined;
|
||||
_ = c.clock_gettime(c.CLOCK_MONOTONIC, &now);
|
||||
|
||||
// wlr_output_attach_render makes the OpenGL context current.
|
||||
if (!c.wlr_output_attach_render(output.wlr_output, null)) {
|
||||
return;
|
||||
}
|
||||
// The "effective" resolution can change if you rotate your outputs.
|
||||
var width: c_int = undefined;
|
||||
var height: c_int = undefined;
|
||||
c.wlr_output_effective_resolution(output.wlr_output, &width, &height);
|
||||
// Begin the renderer (calls glViewport and some other GL sanity checks)
|
||||
c.wlr_renderer_begin(wlr_renderer, width, height);
|
||||
|
||||
const color = [_]f32{ 0.0, 0.16862745, 0.21176471, 1.0 };
|
||||
c.wlr_renderer_clear(wlr_renderer, &color);
|
||||
|
||||
renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_BACKGROUND], &now);
|
||||
renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_BOTTOM], &now);
|
||||
|
||||
// The first view in the list is "on top" so iterate in reverse.
|
||||
var it = ViewStack(View).reverseIterator(output.views.last, output.current_focused_tags);
|
||||
while (it.next()) |node| {
|
||||
const view = &node.view;
|
||||
// This check prevents a race condition when a frame is requested
|
||||
// between mapping of a view and the first configure being handled.
|
||||
if (view.current_box.width == 0 or view.current_box.height == 0) {
|
||||
continue;
|
||||
}
|
||||
// Floating views are rendered on top of normal views
|
||||
if (view.floating) {
|
||||
continue;
|
||||
}
|
||||
renderView(output.*, view, &now);
|
||||
renderBorders(output.*, view, &now);
|
||||
}
|
||||
|
||||
// Render floating views
|
||||
it = ViewStack(View).reverseIterator(output.views.last, output.current_focused_tags);
|
||||
while (it.next()) |node| {
|
||||
const view = &node.view;
|
||||
// This check prevents a race condition when a frame is requested
|
||||
// between mapping of a view and the first configure being handled.
|
||||
if (view.current_box.width == 0 or view.current_box.height == 0) {
|
||||
continue;
|
||||
}
|
||||
if (!view.floating) {
|
||||
continue;
|
||||
}
|
||||
renderView(output.*, view, &now);
|
||||
renderBorders(output.*, view, &now);
|
||||
}
|
||||
|
||||
// Render xwayland unmanged views
|
||||
if (build_options.xwayland) {
|
||||
renderXwaylandUnmanaged(output.*, &now);
|
||||
}
|
||||
|
||||
renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_TOP], &now);
|
||||
renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_OVERLAY], &now);
|
||||
|
||||
// Hardware cursors are rendered by the GPU on a separate plane, and can be
|
||||
// moved around without re-rendering what's beneath them - which is more
|
||||
// efficient. However, not all hardware supports hardware cursors. For this
|
||||
// reason, wlroots provides a software fallback, which we ask it to render
|
||||
// here. wlr_cursor handles configuring hardware vs software cursors for you,
|
||||
// and this function is a no-op when hardware cursors are in use.
|
||||
c.wlr_output_render_software_cursors(output.wlr_output, null);
|
||||
|
||||
// Conclude rendering and swap the buffers, showing the final frame
|
||||
// on-screen.
|
||||
c.wlr_renderer_end(wlr_renderer);
|
||||
// TODO: handle failure
|
||||
_ = c.wlr_output_commit(output.wlr_output);
|
||||
}
|
||||
|
||||
/// Render all surfaces on the passed layer
|
||||
fn renderLayer(output: Output, layer: std.TailQueue(LayerSurface), now: *c.timespec) void {
|
||||
var it = layer.first;
|
||||
while (it) |node| : (it = node.next) {
|
||||
const layer_surface = &node.data;
|
||||
var rdata = SurfaceRenderData{
|
||||
.output = &output,
|
||||
.output_x = layer_surface.box.x,
|
||||
.output_y = layer_surface.box.y,
|
||||
.when = now,
|
||||
};
|
||||
c.wlr_layer_surface_v1_for_each_surface(
|
||||
layer_surface.wlr_layer_surface,
|
||||
renderSurface,
|
||||
&rdata,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn renderView(output: Output, view: *View, now: *c.timespec) void {
|
||||
// If we have a stashed buffer, we are in the middle of a transaction
|
||||
// and need to render that buffer until the transaction is complete.
|
||||
if (view.stashed_buffer) |buffer| {
|
||||
var box = c.wlr_box{
|
||||
.x = view.current_box.x,
|
||||
.y = view.current_box.y,
|
||||
.width = @intCast(c_int, view.current_box.width),
|
||||
.height = @intCast(c_int, view.current_box.height),
|
||||
};
|
||||
|
||||
// Scale the box to the output's current scaling factor
|
||||
scaleBox(&box, output.wlr_output.scale);
|
||||
|
||||
var matrix: [9]f32 = undefined;
|
||||
c.wlr_matrix_project_box(
|
||||
&matrix,
|
||||
&box,
|
||||
.WL_OUTPUT_TRANSFORM_NORMAL,
|
||||
0.0,
|
||||
&output.wlr_output.transform_matrix,
|
||||
);
|
||||
|
||||
// This takes our matrix, the texture, and an alpha, and performs the actual
|
||||
// rendering on the GPU.
|
||||
_ = c.wlr_render_texture_with_matrix(
|
||||
output.getRenderer(),
|
||||
buffer.texture,
|
||||
&matrix,
|
||||
1.0,
|
||||
);
|
||||
} else {
|
||||
// Since there is no stashed buffer, we are not in the middle of
|
||||
// a transaction and may simply render each toplevel surface.
|
||||
var rdata = SurfaceRenderData{
|
||||
.output = &output,
|
||||
.output_x = view.current_box.x,
|
||||
.output_y = view.current_box.y,
|
||||
.when = now,
|
||||
};
|
||||
|
||||
view.forEachSurface(renderSurface, &rdata);
|
||||
}
|
||||
}
|
||||
|
||||
/// Render all xwayland unmanaged windows that appear on the output
|
||||
fn renderXwaylandUnmanaged(output: Output, now: *c.timespec) void {
|
||||
const root = output.root;
|
||||
const output_box: *c.wlr_box = c.wlr_output_layout_get_box(
|
||||
root.wlr_output_layout,
|
||||
output.wlr_output,
|
||||
);
|
||||
|
||||
var it = output.root.xwayland_unmanaged_views.first;
|
||||
while (it) |node| : (it = node.next) {
|
||||
const wlr_xwayland_surface = node.data.wlr_xwayland_surface;
|
||||
|
||||
var rdata = SurfaceRenderData{
|
||||
.output = &output,
|
||||
.output_x = wlr_xwayland_surface.x - output_box.x,
|
||||
.output_y = wlr_xwayland_surface.y - output_box.y,
|
||||
.when = now,
|
||||
};
|
||||
c.wlr_surface_for_each_surface(wlr_xwayland_surface.surface, renderSurface, &rdata);
|
||||
}
|
||||
}
|
||||
|
||||
/// This function is passed to wlroots to render each surface during iteration
|
||||
fn renderSurface(
|
||||
_surface: ?*c.wlr_surface,
|
||||
surface_x: c_int,
|
||||
surface_y: c_int,
|
||||
data: ?*c_void,
|
||||
) callconv(.C) void {
|
||||
// wlroots says this will never be null
|
||||
const surface = _surface.?;
|
||||
const rdata = @ptrCast(*SurfaceRenderData, @alignCast(@alignOf(SurfaceRenderData), data));
|
||||
const output = rdata.output;
|
||||
const wlr_output = output.wlr_output;
|
||||
|
||||
// We first obtain a wlr_texture, which is a GPU resource. wlroots
|
||||
// automatically handles negotiating these with the client. The underlying
|
||||
// resource could be an opaque handle passed from the client, or the client
|
||||
// could have sent a pixel buffer which we copied to the GPU, or a few other
|
||||
// means. You don't have to worry about this, wlroots takes care of it.
|
||||
const texture = c.wlr_surface_get_texture(surface);
|
||||
if (texture == null) {
|
||||
return;
|
||||
}
|
||||
|
||||
var box = c.wlr_box{
|
||||
.x = rdata.output_x + surface_x,
|
||||
.y = rdata.output_y + surface_y,
|
||||
.width = surface.current.width,
|
||||
.height = surface.current.height,
|
||||
};
|
||||
|
||||
// Scale the box to the output's current scaling factor
|
||||
scaleBox(&box, wlr_output.scale);
|
||||
|
||||
// wlr_matrix_project_box is a helper which takes a box with a desired
|
||||
// x, y coordinates, width and height, and an output geometry, then
|
||||
// prepares an orthographic projection and multiplies the necessary
|
||||
// transforms to produce a model-view-projection matrix.
|
||||
var matrix: [9]f32 = undefined;
|
||||
const transform = c.wlr_output_transform_invert(surface.current.transform);
|
||||
c.wlr_matrix_project_box(&matrix, &box, transform, 0.0, &wlr_output.transform_matrix);
|
||||
|
||||
// This takes our matrix, the texture, and an alpha, and performs the actual
|
||||
// rendering on the GPU.
|
||||
_ = c.wlr_render_texture_with_matrix(output.getRenderer(), texture, &matrix, 1.0);
|
||||
|
||||
// This lets the client know that we've displayed that frame and it can
|
||||
// prepare another one now if it likes.
|
||||
c.wlr_surface_send_frame_done(surface, rdata.when);
|
||||
}
|
||||
|
||||
fn renderBorders(output: Output, view: *View, now: *c.timespec) void {
|
||||
var border: Box = undefined;
|
||||
const color = if (view.focused)
|
||||
[_]f32{ 0.57647059, 0.63137255, 0.63137255, 1.0 } // Solarized base1
|
||||
else
|
||||
[_]f32{ 0.34509804, 0.43137255, 0.45882353, 1.0 }; // Solarized base01
|
||||
const border_width = output.root.server.config.border_width;
|
||||
|
||||
// left and right, covering the corners as well
|
||||
border.y = view.current_box.y - @intCast(i32, border_width);
|
||||
border.width = border_width;
|
||||
border.height = view.current_box.height + border_width * 2;
|
||||
|
||||
// left
|
||||
border.x = view.current_box.x - @intCast(i32, border_width);
|
||||
renderRect(output, border, color);
|
||||
|
||||
// right
|
||||
border.x = view.current_box.x + @intCast(i32, view.current_box.width);
|
||||
renderRect(output, border, color);
|
||||
|
||||
// top and bottom
|
||||
border.x = view.current_box.x;
|
||||
border.width = view.current_box.width;
|
||||
border.height = border_width;
|
||||
|
||||
// top
|
||||
border.y = view.current_box.y - @intCast(i32, border_width);
|
||||
renderRect(output, border, color);
|
||||
|
||||
// bottom border
|
||||
border.y = view.current_box.y + @intCast(i32, view.current_box.height);
|
||||
renderRect(output, border, color);
|
||||
}
|
||||
|
||||
fn renderRect(output: Output, box: Box, color: [4]f32) void {
|
||||
var wlr_box = box.toWlrBox();
|
||||
scaleBox(&wlr_box, output.wlr_output.scale);
|
||||
c.wlr_render_rect(
|
||||
output.getRenderer(),
|
||||
&wlr_box,
|
||||
&color,
|
||||
&output.wlr_output.transform_matrix,
|
||||
);
|
||||
}
|
||||
|
||||
/// Scale a wlr_box, taking the possibility of fractional scaling into account.
|
||||
fn scaleBox(box: *c.wlr_box, scale: f64) void {
|
||||
box.x = @floatToInt(c_int, @round(@intToFloat(f64, box.x) * scale));
|
||||
box.y = @floatToInt(c_int, @round(@intToFloat(f64, box.y) * scale));
|
||||
box.width = scaleLength(box.width, box.x, scale);
|
||||
box.height = scaleLength(box.height, box.x, scale);
|
||||
}
|
||||
|
||||
/// Scales a width/height.
|
||||
///
|
||||
/// This might seem overly complex, but it needs to work for fractional scaling.
|
||||
fn scaleLength(length: c_int, offset: c_int, scale: f64) c_int {
|
||||
return @floatToInt(c_int, @round(@intToFloat(f64, offset + length) * scale) -
|
||||
@round(@intToFloat(f64, offset) * scale));
|
||||
}
|
Reference in New Issue
Block a user