river/contrib/layout.c

489 lines
15 KiB
C
Raw Normal View History

/*
* Tiled layout for river, implemented in understandable, simple, commented code.
* Reading this code should help you get a basic understanding of how to use
* river-layout to create a basic layout generator.
*
* Q: Wow, this is a lot of code just for a layout!
* A: No, it really is not. Most of the code here is just generic Wayland client
* boilerplate. The actual layout part is pretty small.
*
* Q: Can I use this to port dwm layouts to river?
* A: Yes you can! You just need to replace the logic in layout_handle_layout_demand().
* You don't even need to fully understand the protocol if all you want to
* do is just port some layouts.
*
* Q: I have no idea how any of this works.
* A: If all you want to do is create layouts, you do not need to understand
* the Wayland parts of the code. If you still want to understand it and are
* familiar with how Wayland clients work, read the protocol. If you are new
* to writing Wayland client code, you can read https://wayland-book.com,
* then read the protocol.
*
* Q: How do I build this?
* A: To build, you need to generate the header and code of the layout protocol
* extension and link against them. This is achieved with the following
* commands (You may want to setup a build system).
*
* wayland-scanner private-code < river-layout-v3.xml > river-layout-v3.c
* wayland-scanner client-header < river-layout-v3.xml > river-layout-v3.h
* gcc -Wall -Wextra -Wpedantic -Wno-unused-parameter -c -o layout.o layout.c
* gcc -Wall -Wextra -Wpedantic -Wno-unused-parameter -c -o river-layout-v3.o river-layout-v3.c
* gcc -o layout layout.o river-layout-v3.o -lwayland-client
*/
#include <assert.h>
#include <ctype.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <wayland-client.h>
#include <wayland-client-protocol.h>
#include "river-layout-v3.h"
/* A few macros to indulge the inner glibc user. */
#define MIN(a, b) ( a < b ? a : b )
#define MAX(a, b) ( a > b ? a : b )
#define CLAMP(a, b, c) ( MIN(MAX(b, c), MAX(MIN(b, c), a)) )
struct Output
{
struct wl_list link;
struct wl_output *output;
struct river_layout_v3 *layout;
uint32_t main_count;
double main_ratio;
uint32_t view_padding;
uint32_t outer_padding;
bool configured;
};
/* In Wayland it's a good idea to have your main data global, since you'll need
* it everywhere anyway.
*/
struct wl_display *wl_display;
struct wl_registry *wl_registry;
struct wl_callback *sync_callback;
struct river_layout_manager_v3 *layout_manager;
struct wl_list outputs;
bool loop = true;
int ret = EXIT_FAILURE;
static void layout_handle_layout_demand (void *data, struct river_layout_v3 *river_layout_v3,
uint32_t view_count, uint32_t width, uint32_t height, uint32_t tags, uint32_t serial)
{
struct Output *output = (struct Output *)data;
/* Simple tiled layout with no frills.
*
* If you want to create your own layout, just rip the following code
* out and replace it with your own logic. All dynamic tiling layouts
* you know, for example from dwm, can be easily ported to river this
* way. For more creative layouts, you probably also want to add custom
* values. Happy hacking!
*/
width -= 2 * output->outer_padding, height -= 2 * output->outer_padding;
unsigned int main_size, stack_size, view_x, view_y, view_width, view_height;
if ( output->main_count == 0 )
{
main_size = 0;
stack_size = width;
}
else if ( view_count <= output->main_count )
{
main_size = width;
stack_size = 0;
}
else
{
main_size = width * output->main_ratio;
stack_size = width - main_size;
}
for (unsigned int i = 0; i < view_count; i++)
{
if ( i < output->main_count ) /* main area. */
{
view_x = 0;
view_width = main_size;
view_height = height / MIN(output->main_count, view_count);
view_y = i * view_height;
}
else /* Stack area. */
{
view_x = main_size;
view_width = stack_size;
view_height = height / ( view_count - output->main_count);
view_y = (i - output->main_count) * view_height;
}
river_layout_v3_push_view_dimensions(output->layout,
view_x + output->view_padding + output->outer_padding,
view_y + output->view_padding + output->outer_padding,
view_width - (2 * output->view_padding),
view_height - (2 * output->view_padding),
serial);
}
/* Committing the layout means telling the server that your code is done
* laying out windows. Make sure you have pushed exactly the right
* amount of view dimensions, a mismatch is a protocol error.
*
* You also have to provide a layout name. This is a user facing string
* that the server can forward to status bars. You can use it to tell
* the user which layout is currently in use. You could also add some
* status information about your layout, but in this example we are
* boring and just use a static "[]=" like in dwm.
*/
river_layout_v3_commit(output->layout, "[]=", serial);
}
static void layout_handle_namespace_in_use (void *data, struct river_layout_v3 *river_layout_v3)
{
/* Oh no, the namespace we choose is already used by another client!
* All we can do now is destroy the river_layout object. Because we are
* lazy, we just abort and let our cleanup mechanism destroy it. A more
* sophisticated client could instead destroy only the one single
* affected river_layout object and recover from this mishap. Writing
* such a client is left as an exercise for the reader.
*/
fputs("Namespace already in use.\n", stderr);
loop = false;
}
static bool skip_whitespace (char **ptr)
{
if ( *ptr == NULL )
return false;
while (isspace(**ptr))
{
(*ptr)++;
if ( **ptr == '\0' )
return false;
}
return true;
}
static bool skip_nonwhitespace (char **ptr)
{
if ( *ptr == NULL )
return false;
while (! isspace(**ptr))
{
(*ptr)++;
if ( **ptr == '\0' )
return false;
}
return true;
}
static const char *get_second_word (char **ptr, const char *name)
{
/* Skip to the next word. */
if ( !skip_nonwhitespace(ptr) || !skip_whitespace(ptr) )
{
fprintf(stderr, "ERROR: Too few arguments. '%s' needs one argument.\n", name);
return NULL;
}
/* Now we know where the second word begins. */
const char *second_word = *ptr;
/* Check if there is a third word. */
if ( skip_nonwhitespace(ptr) && skip_whitespace(ptr) )
{
fprintf(stderr, "ERROR: Too many arguments. '%s' needs one argument.\n", name);
return NULL;
}
return second_word;
}
static void handle_uint32_command (char **ptr, uint32_t *value, const char *name)
{
const char *second_word = get_second_word(ptr, name);
if ( second_word == NULL )
return;
const int32_t arg = atoi(second_word);
if ( *second_word == '+' || *second_word == '-' )
*value = (uint32_t)MAX((int32_t)*value + arg, 0);
else
*value = (uint32_t)MAX(arg, 0);
}
static void handle_float_command(char **ptr, double *value, const char *name, double clamp_upper, double clamp_lower)
{
const char *second_word = get_second_word(ptr, name);
if ( second_word == NULL )
return;
const double arg = atof(second_word);
if ( *second_word == '+' || *second_word == '-' )
*value = CLAMP(*value + arg, clamp_upper, clamp_lower);
else
*value = CLAMP(arg, clamp_upper, clamp_lower);
}
static bool word_comp (const char *word, const char *comp)
{
if ( strncmp(word, comp, strlen(comp)) == 0 )
{
const char *after_comp = word + strlen(comp);
if ( isspace(*after_comp) || *after_comp == '\0' )
return true;
}
return false;
}
static void layout_handle_user_command (void *data, struct river_layout_v3 *river_layout_manager_v3,
const char *_command)
{
/* The user_command event will be received whenever the user decided to
* send us a command. As an example, commands can be used to change the
* layout values. Parsing the commands is the job of the layout
* generator, the server just sends us the raw string.
*
* After this event is recevied, the views on the output will be
* re-arranged and so we will also receive a layout_demand event.
*/
struct Output *output = (struct Output *)data;
/* Skip preceding whitespace. */
char *command = (char *)_command;
if (! skip_whitespace(&command))
return;
if (word_comp(command, "main_count"))
handle_uint32_command(&command, &output->main_count, "main_count");
else if (word_comp(command, "view_padding"))
handle_uint32_command(&command, &output->view_padding, "view_padding");
else if (word_comp(command, "outer_padding"))
handle_uint32_command(&command, &output->outer_padding, "outer_padding");
else if (word_comp(command, "main_ratio"))
handle_float_command(&command, &output->main_ratio, "main_ratio", 0.1, 0.9);
else if (word_comp(command, "reset"))
{
/* This is an example of a command that does something different
* than just modifying a value. It resets all values to their
* defaults.
*/
if ( skip_nonwhitespace(&command) && skip_whitespace(&command) )
{
fputs("ERROR: Too many arguments. 'reset' has no arguments.\n", stderr);
return;
}
output->main_count = 1;
output->main_ratio = 0.6;
output->view_padding = 5;
output->outer_padding = 5;
}
else
fprintf(stderr, "ERROR: Unknown command: %s\n", command);
}
static const struct river_layout_v3_listener layout_listener = {
.namespace_in_use = layout_handle_namespace_in_use,
.layout_demand = layout_handle_layout_demand,
.user_command = layout_handle_user_command,
};
static void configure_output (struct Output *output)
{
output->configured = true;
/* The namespace of the layout is how the compositor chooses what layout
* to use. It can be any arbitrary string. It should describe roughly
* what kind of layout your client will create, so here we use "tile".
*/
output->layout = river_layout_manager_v3_get_layout(layout_manager,
output->output, "tile");
river_layout_v3_add_listener(output->layout, &layout_listener, output);
}
static bool create_output (struct wl_output *wl_output)
{
struct Output *output = calloc(1, sizeof(struct Output));
if ( output == NULL )
{
fputs("Failed to allocate.\n", stderr);
return false;
}
output->output = wl_output;
output->layout = NULL;
output->configured = false;
/* These are the parameters of our layout. In this case, they are the
* ones you'd typically expect from a dynamic tiling layout, but if you
* are creative, you can do more. You can use any arbitrary amount of
* all kinds of values in your layout. If the user wants to change a
* value, the server lets us know using user_command event of the
* river_layout object.
*
* A layout generator is responsible for having sane defaults for all
* layout values. The server only sends user_command events when there
* actually is a command the user wants to send us.
*/
output->main_count = 1;
output->main_ratio = 0.6;
output->view_padding = 5;
output->outer_padding = 5;
/* If we already have the river_layout_manager, we can get a
* river_layout object for this output.
*/
if ( layout_manager != NULL )
configure_output(output);
wl_list_insert(&outputs, &output->link);
return true;
}
static void destroy_output (struct Output *output)
{
if ( output->layout != NULL )
river_layout_v3_destroy(output->layout);
wl_output_destroy(output->output);
wl_list_remove(&output->link);
free(output);
}
static void destroy_all_outputs ()
{
struct Output *output, *tmp;
wl_list_for_each_safe(output, tmp, &outputs, link)
destroy_output(output);
}
static void registry_handle_global (void *data, struct wl_registry *registry,
uint32_t name, const char *interface, uint32_t version)
{
if ( strcmp(interface, river_layout_manager_v3_interface.name) == 0 )
layout_manager = wl_registry_bind(registry, name,
&river_layout_manager_v3_interface, 1);
else if ( strcmp(interface, wl_output_interface.name) == 0 )
{
struct wl_output *wl_output = wl_registry_bind(registry, name,
&wl_output_interface, version);
if (! create_output(wl_output))
{
loop = false;
ret = EXIT_FAILURE;
}
}
}
/* A no-op function we plug into listeners when we don't want to handle an event. */
static void noop () {}
static const struct wl_registry_listener registry_listener = {
.global = registry_handle_global,
.global_remove = noop
};
static void sync_handle_done (void *data, struct wl_callback *wl_callback,
uint32_t irrelevant)
{
wl_callback_destroy(wl_callback);
sync_callback = NULL;
/* When this function is called, the registry finished advertising all
* available globals. Let's check if we have everything we need.
*/
if ( layout_manager == NULL )
{
fputs("Wayland compositor does not support river-layout-v3.\n", stderr);
ret = EXIT_FAILURE;
loop = false;
return;
}
/* If outputs were registered before the river_layout_manager is
* available, they won't have a river_layout, so we need to create those
* here.
*/
struct Output *output;
wl_list_for_each(output, &outputs, link)
if (! output->configured)
configure_output(output);
}
static const struct wl_callback_listener sync_callback_listener = {
.done = sync_handle_done,
};
static bool init_wayland (void)
{
/* We query the display name here instead of letting wl_display_connect()
* figure it out itself, because libwayland (for legacy reasons) falls
* back to using "wayland-0" when $WAYLAND_DISPLAY is not set, which is
* generally not desirable.
*/
const char *display_name = getenv("WAYLAND_DISPLAY");
if ( display_name == NULL )
{
fputs("WAYLAND_DISPLAY is not set.\n", stderr);
return false;
}
wl_display = wl_display_connect(display_name);
if ( wl_display == NULL )
{
fputs("Can not connect to Wayland server.\n", stderr);
return false;
}
wl_list_init(&outputs);
/* The registry is a global object which is used to advertise all
* available global objects.
*/
wl_registry = wl_display_get_registry(wl_display);
wl_registry_add_listener(wl_registry, &registry_listener, NULL);
/* The sync callback we attach here will be called when all previous
* requests have been handled by the server. This allows us to know the
* end of the startup, at which point all necessary globals should be
* bound.
*/
sync_callback = wl_display_sync(wl_display);
wl_callback_add_listener(sync_callback, &sync_callback_listener, NULL);
return true;
}
static void finish_wayland (void)
{
if ( wl_display == NULL )
return;
destroy_all_outputs();
if ( sync_callback != NULL )
wl_callback_destroy(sync_callback);
if ( layout_manager != NULL )
river_layout_manager_v3_destroy(layout_manager);
wl_registry_destroy(wl_registry);
wl_display_disconnect(wl_display);
}
int main (int argc, char *argv[])
{
if (init_wayland())
{
ret = EXIT_SUCCESS;
while ( loop && wl_display_dispatch(wl_display) != -1 );
}
finish_wayland();
return ret;
}