river/src/render.zig

346 lines
14 KiB
Zig
Raw Normal View History

const std = @import("std");
const c = @import("c.zig");
const LayerSurface = @import("layer_surface.zig").LayerSurface;
const Output = @import("output.zig").Output;
const Server = @import("server.zig").Server;
const View = @import("view.zig").View;
const ViewStack = @import("view_stack.zig").ViewStack;
pub fn renderOutput(output: *Output) void {
const renderer = output.root.server.wlr_renderer;
var now: c.struct_timespec = undefined;
_ = c.clock_gettime(c.CLOCK_MONOTONIC, &now);
// wlr_output_attach_render makes the OpenGL context current.
if (!c.wlr_output_attach_render(output.wlr_output, null)) {
return;
}
// The "effective" resolution can change if you rotate your outputs.
var width: c_int = undefined;
var height: c_int = undefined;
c.wlr_output_effective_resolution(output.wlr_output, &width, &height);
// Begin the renderer (calls glViewport and some other GL sanity checks)
c.wlr_renderer_begin(renderer, width, height);
const color = [_]f32{ 0.0, 0.16862745, 0.21176471, 1.0 };
c.wlr_renderer_clear(renderer, &color);
// The view has a position in layout coordinates. If you have two displays,
// one next to the other, both 1080p, a view on the rightmost display might
// have layout coordinates of 2000,100. We need to translate that to
// output-local coordinates, or (2000 - 1920).
var ox: f64 = 0.0;
var oy: f64 = 0.0;
c.wlr_output_layout_output_coords(
output.root.wlr_output_layout,
output.wlr_output,
&ox,
&oy,
);
renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_BACKGROUND], &now, ox, oy);
renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_BOTTOM], &now, ox, oy);
// The first view in the list is "on top" so iterate in reverse.
var it = ViewStack.reverseIterator(output.views.last, output.current_focused_tags);
while (it.next()) |view| {
// This check prevents a race condition when a frame is requested
// between mapping of a view and the first configure being handled.
if (view.current_box.width == 0 or view.current_box.height == 0) {
continue;
}
renderView(output.*, view, &now, ox, oy);
renderBorders(output.*, view, &now, ox, oy);
}
renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_TOP], &now, ox, oy);
renderLayer(output.*, output.layers[c.ZWLR_LAYER_SHELL_V1_LAYER_OVERLAY], &now, ox, oy);
// Hardware cursors are rendered by the GPU on a separate plane, and can be
// moved around without re-rendering what's beneath them - which is more
// efficient. However, not all hardware supports hardware cursors. For this
// reason, wlroots provides a software fallback, which we ask it to render
// here. wlr_cursor handles configuring hardware vs software cursors for you,
// and this function is a no-op when hardware cursors are in use.
c.wlr_output_render_software_cursors(output.wlr_output, null);
// Conclude rendering and swap the buffers, showing the final frame
// on-screen.
c.wlr_renderer_end(renderer);
// TODO: handle failure
_ = c.wlr_output_commit(output.wlr_output);
}
const LayerSurfaceRenderData = struct {
output: *c.wlr_output,
renderer: *c.wlr_renderer,
layer_surface: *LayerSurface,
when: *c.struct_timespec,
ox: f64,
oy: f64,
};
/// Render all surfaces on the passed layer
fn renderLayer(output: Output, layer: std.TailQueue(LayerSurface), now: *c.struct_timespec, ox: f64, oy: f64) void {
var it = layer.first;
while (it) |node| : (it = node.next) {
const layer_surface = &node.data;
var rdata = LayerSurfaceRenderData{
.output = output.wlr_output,
.renderer = output.root.server.wlr_renderer,
.layer_surface = layer_surface,
.when = now,
.ox = ox,
.oy = oy,
};
c.wlr_layer_surface_v1_for_each_surface(
layer_surface.wlr_layer_surface,
renderLayerSurface,
&rdata,
);
}
}
/// This function is called for every layer surface and popup that needs to be rendered.
/// TODO: refactor this to reduce code duplication
fn renderLayerSurface(_surface: ?*c.wlr_surface, sx: c_int, sy: c_int, data: ?*c_void) callconv(.C) void {
// wlroots says this will never be null
const surface = _surface.?;
// This function is called for every surface that needs to be rendered.
const rdata = @ptrCast(*LayerSurfaceRenderData, @alignCast(@alignOf(LayerSurfaceRenderData), data));
const layer_surface = rdata.layer_surface;
const output = rdata.output;
// We first obtain a wlr_texture, which is a GPU resource. wlroots
// automatically handles negotiating these with the client. The underlying
// resource could be an opaque handle passed from the client, or the client
// could have sent a pixel buffer which we copied to the GPU, or a few other
// means. You don't have to worry about this, wlroots takes care of it.
const texture = c.wlr_surface_get_texture(surface);
if (texture == null) {
return;
}
var box = c.wlr_box{
.x = @floatToInt(c_int, rdata.ox) + layer_surface.box.x + sx,
.y = @floatToInt(c_int, rdata.oy) + layer_surface.box.y + sy,
.width = surface.current.width,
.height = surface.current.height,
};
// Scale the box to the output's current scaling factor
scaleBox(&box, output.scale);
// wlr_matrix_project_box is a helper which takes a box with a desired
// x, y coordinates, width and height, and an output geometry, then
// prepares an orthographic projection and multiplies the necessary
// transforms to produce a model-view-projection matrix.
var matrix: [9]f32 = undefined;
const transform = c.wlr_output_transform_invert(surface.current.transform);
c.wlr_matrix_project_box(&matrix, &box, transform, 0.0, &output.transform_matrix);
// This takes our matrix, the texture, and an alpha, and performs the actual
// rendering on the GPU.
_ = c.wlr_render_texture_with_matrix(rdata.renderer, texture, &matrix, 1.0);
// This lets the client know that we've displayed that frame and it can
// prepare another one now if it likes.
c.wlr_surface_send_frame_done(surface, rdata.when);
}
const ViewRenderData = struct {
output: *c.wlr_output,
renderer: *c.wlr_renderer,
view: *View,
when: *c.struct_timespec,
ox: f64,
oy: f64,
};
fn renderView(output: Output, view: *View, now: *c.struct_timespec, ox: f64, oy: f64) void {
// If we have a stashed buffer, we are in the middle of a transaction
// and need to render that buffer until the transaction is complete.
if (view.stashed_buffer) |buffer| {
const border_width = view.output.root.server.config.border_width;
const view_padding = view.output.root.server.config.view_padding;
var box = c.wlr_box{
.x = view.current_box.x + @intCast(i32, border_width + view_padding),
.y = view.current_box.y + @intCast(i32, border_width + view_padding),
.width = @intCast(c_int, view.current_box.width - border_width * 2 - view_padding * 2),
.height = @intCast(c_int, view.current_box.height - border_width * 2 - view_padding * 2),
};
// Scale the box to the output's current scaling factor
scaleBox(&box, output.wlr_output.scale);
var matrix: [9]f32 = undefined;
c.wlr_matrix_project_box(
&matrix,
&box,
c.enum_wl_output_transform.WL_OUTPUT_TRANSFORM_NORMAL,
0.0,
&output.wlr_output.transform_matrix,
);
// This takes our matrix, the texture, and an alpha, and performs the actual
// rendering on the GPU.
_ = c.wlr_render_texture_with_matrix(
output.root.server.wlr_renderer,
buffer.texture,
&matrix,
1.0,
);
} else {
// Since there is no stashed buffer, we are not in the middle of
// a transaction and may simply render each toplevel surface.
var rdata = ViewRenderData{
.output = output.wlr_output,
.view = view,
.renderer = output.root.server.wlr_renderer,
.when = now,
.ox = ox,
.oy = oy,
};
// This calls our render_surface function for each surface among the
// xdg_surface's toplevel and popups.
c.wlr_xdg_surface_for_each_surface(view.wlr_xdg_surface, renderSurface, &rdata);
}
}
/// This function is called for every toplevel and popup surface that needs to be rendered.
fn renderSurface(_surface: ?*c.wlr_surface, sx: c_int, sy: c_int, data: ?*c_void) callconv(.C) void {
// wlroots says this will never be null
const surface = _surface.?;
const rdata = @ptrCast(*ViewRenderData, @alignCast(@alignOf(ViewRenderData), data));
const view = rdata.view;
const output = rdata.output;
// We first obtain a wlr_texture, which is a GPU resource. wlroots
// automatically handles negotiating these with the client. The underlying
// resource could be an opaque handle passed from the client, or the client
// could have sent a pixel buffer which we copied to the GPU, or a few other
// means. You don't have to worry about this, wlroots takes care of it.
const texture = c.wlr_surface_get_texture(surface);
if (texture == null) {
return;
}
const border_width = view.output.root.server.config.border_width;
const view_padding = view.output.root.server.config.view_padding;
var box = c.wlr_box{
.x = @floatToInt(c_int, rdata.ox) + view.current_box.x + sx +
@intCast(c_int, border_width + view_padding),
.y = @floatToInt(c_int, rdata.oy) + view.current_box.y + sy +
@intCast(c_int, border_width + view_padding),
.width = surface.current.width,
.height = surface.current.height,
};
// Scale the box to the output's current scaling factor
scaleBox(&box, output.scale);
// wlr_matrix_project_box is a helper which takes a box with a desired
// x, y coordinates, width and height, and an output geometry, then
// prepares an orthographic projection and multiplies the necessary
// transforms to produce a model-view-projection matrix.
var matrix: [9]f32 = undefined;
const transform = c.wlr_output_transform_invert(surface.current.transform);
c.wlr_matrix_project_box(&matrix, &box, transform, 0.0, &output.transform_matrix);
// This takes our matrix, the texture, and an alpha, and performs the actual
// rendering on the GPU.
_ = c.wlr_render_texture_with_matrix(rdata.renderer, texture, &matrix, 1.0);
// This lets the client know that we've displayed that frame and it can
// prepare another one now if it likes.
c.wlr_surface_send_frame_done(surface, rdata.when);
}
fn renderBorders(output: Output, view: *View, now: *c.struct_timespec, ox: f64, oy: f64) void {
var border: c.wlr_box = undefined;
const color = if (output.root.focused_view == view)
[_]f32{ 0.57647059, 0.63137255, 0.63137255, 1.0 } // Solarized base1
else
[_]f32{ 0.34509804, 0.43137255, 0.45882353, 1.0 }; // Solarized base01
const border_width = output.root.server.config.border_width;
const view_padding = output.root.server.config.view_padding;
// left border
border.x = @floatToInt(c_int, ox) + view.current_box.x + @intCast(c_int, view_padding);
border.y = @floatToInt(c_int, oy) + view.current_box.y + @intCast(c_int, view_padding);
border.width = @intCast(c_int, border_width);
border.height = @intCast(c_int, view.current_box.height - view_padding * 2);
scaleBox(&border, output.wlr_output.scale);
c.wlr_render_rect(
output.root.server.wlr_renderer,
&border,
&color,
&output.wlr_output.transform_matrix,
);
// right border
border.x = @floatToInt(c_int, ox) + view.current_box.x +
@intCast(c_int, view.current_box.width - border_width - view_padding);
border.y = @floatToInt(c_int, oy) + view.current_box.y + @intCast(c_int, view_padding);
border.width = @intCast(c_int, border_width);
border.height = @intCast(c_int, view.current_box.height - view_padding * 2);
scaleBox(&border, output.wlr_output.scale);
c.wlr_render_rect(
output.root.server.wlr_renderer,
&border,
&color,
&output.wlr_output.transform_matrix,
);
// top border
border.x = @floatToInt(c_int, ox) + view.current_box.x +
@intCast(c_int, border_width + view_padding);
border.y = @floatToInt(c_int, oy) + view.current_box.y +
@intCast(c_int, view_padding);
border.width = @intCast(c_int, view.current_box.width -
border_width * 2 - view_padding * 2);
border.height = @intCast(c_int, border_width);
scaleBox(&border, output.wlr_output.scale);
c.wlr_render_rect(
output.root.server.wlr_renderer,
&border,
&color,
&output.wlr_output.transform_matrix,
);
// bottom border
border.x = @floatToInt(c_int, ox) + view.current_box.x +
@intCast(c_int, border_width + view_padding);
border.y = @floatToInt(c_int, oy) + view.current_box.y +
@intCast(c_int, view.current_box.height - border_width - view_padding);
border.width = @intCast(c_int, view.current_box.width -
border_width * 2 - view_padding * 2);
border.height = @intCast(c_int, border_width);
scaleBox(&border, output.wlr_output.scale);
c.wlr_render_rect(
output.root.server.wlr_renderer,
&border,
&color,
&output.wlr_output.transform_matrix,
);
}
/// Scale a wlr_box, taking the possibility of fractional scaling into account.
fn scaleBox(box: *c.wlr_box, scale: f64) void {
box.x = @floatToInt(c_int, @round(@intToFloat(f64, box.x) * scale));
box.y = @floatToInt(c_int, @round(@intToFloat(f64, box.y) * scale));
box.width = scaleLength(box.width, box.x, scale);
box.height = scaleLength(box.height, box.x, scale);
}
/// Scales a width/height.
///
/// This might seem overly complex, but it needs to work for fractional scaling.
fn scaleLength(length: c_int, offset: c_int, scale: f64) c_int {
return @floatToInt(c_int, @round(@intToFloat(f64, offset + length) * scale) -
@round(@intToFloat(f64, offset) * scale));
}