cl-quantum/circuit.lisp

135 lines
5.7 KiB
Common Lisp

;;;; High-level interface for building quantum circuits
(in-package :cl-quantum/circuit)
(defparameter *circuit-measure-places* 5
"The number of places to use with the :measure instruction in circuits.")
(defun circuit-arbitrary-gate (state operator gate target &optional control)
(declare (ignorable operator))
(if control
(napply-controlled-gate state gate target control)
(napply-gate state gate target)))
(defun circuit-matrix-operation (state operator target &optional control)
(let ((matrix (case operator
(:* +identity-2x2+)
(:x +pauli-x-gate+)
(:y +pauli-y-gate+)
(:z +pauli-z-gate+)
(:h +hadamard-gate+)
(:p +phase-gate+)
(:t +pi/8-gate+)
(:cnot +pauli-x-gate+)
(:cz +pauli-z-gate+))))
(if control
(napply-controlled-gate state matrix target control)
(napply-gate state matrix target))))
(defun circuit-n-controlled-gate (state operator target controls)
(let ((func (case operator
(:ntoff 'make-n-toffoli-operator)
(:ncz 'make-n-controlled-z-operator))))
(replace-state state (*mv (funcall func (state-bits state)
target controls)
state))))
(defparameter *circuit-operators*
;; Operator, # args, more args?, has output?, function
;; The output is always the last argument
`((:gate 2 nil nil circuit-arbitrary-gate)
(:cgate 3 nil nil circuit-arbitrary-gate)
(:* 1 nil nil circuit-matrix-operation)
(:x 1 nil nil circuit-matrix-operation)
(:y 1 nil nil circuit-matrix-operation)
(:z 1 nil nil circuit-matrix-operation)
(:h 1 nil nil circuit-matrix-operation)
(:p 1 nil nil circuit-matrix-operation)
(:t 1 nil nil circuit-matrix-operation)
(:cnot 2 nil nil circuit-matrix-operation)
(:cz 2 nil nil circuit-matrix-operation)
(:measure 2 nil t ,(lambda (state operator &rest args)
(declare (ignorable operator))
(nmeasure state (car args)
:places *circuit-measure-places*)))
(:ntoff 2 nil nil circuit-n-controlled-gate)
(:ncz 2 nil nil circuit-n-controlled-gate)))
(defun make-circuit ()
"Create a new blank circuit."
'(:circuit))
(defun add-to-circuit (circuit operator &rest args)
"Add OPERATOR to CIRCUIT."
(let ((entry (assoc operator *circuit-operators*)))
(unless entry
(error "Unknown circuit operator: ~s" operator))
(destructuring-bind (name arg-count has-rest &rest r) entry
(declare (ignorable name r))
(unless (or (and has-rest (>= (length args) arg-count))
(= (length args) arg-count))
(error "Operator ~s expects ~@[~*exactly ~]~s arg~:p, got ~s" operator
(not has-rest) arg-count (length args)))
(nconc circuit (list (cons operator args))))
circuit))
(defmacro with-build-circuit (&body body)
"Create a circuit using a simple DSL. BODY can be any valid Lisp forms, in
addition to function calls to functions named in `*circuit-operators*'."
(let ((circuit-var (gensym)))
`(let ((,circuit-var))
(macrolet
(,@(mapcar (lambda (oper)
(let ((arg (gensym))
(arg-list (loop repeat (second oper)
collect (gensym)))
(whole-arg (when (third oper)
(gensym))))
`(,(car oper) (&whole ,arg
,@arg-list
,@(when (third oper)
(list '&rest whole-arg)))
(declare (ignorable ,@arg-list
,@(when (third oper)
(list whole-arg))))
`(push (list ,@,arg) ,',circuit-var))))
*circuit-operators*))
,@body)
(cons :circuit (nreverse ,circuit-var)))))
(defun apply-circuit-operator-to-state (state operator args)
"Apply the circuit operator OPERATOR to STATE by calling its function with
ARGS."
(destructuring-bind (&optional name arg-count has-rest has-output function)
(assoc operator *circuit-operators*)
(declare (ignorable name arg-count has-rest))
(assert function ()
"Invalid circuit operator: ~s" operator)
(let ((output (apply function state operator args)))
(when has-output
(cons (car (last args)) output)))))
(defun run-circuit (circuit &key bits uniform coefficients probabilities (places 5))
"Run the circuit CIRCUIT and return the final state. The initial state can be
specified in one of three ways:
- BITS: the number of qbits
- COEFFICIENTS: the initial coefficients
- PROBABILITES: the initial probabilities"
(assert (= 1 (count-if 'identity (list bits coefficients probabilities uniform)))
()
"Exactly one of BITS, UNIFORM, COEFFICIENTS, and PROBABILITIES can ~
be present")
(let ((state (cond
(bits (make-zero-state bits))
(uniform (make-uniform-normal-state uniform))
(coefficients (coerce coefficients 'vector))
(probabilities (make-normal-state probabilities)))))
(values
state
(loop with *circuit-measure-places* = places
for element in (cdr circuit)
for name = (car element)
for args = (cdr element)
for result = (apply-circuit-operator-to-state state name args)
when result
collect result))))