(in-package :cl-quantum/math) (defmacro domatrix ((var matrix &optional retval) &body body) "Execute BODY for with VAR bound once for each element in MATRIX, then evaluate and return RETVAL. VAR can be of one of the following three forms: - A symbol that will be bound on each iteration - A list of three symbols which are variables to bind to the value, row, and column on each iteration - A list of two symbols which are variables to bind to the row and column on each iteration" (let* ((matrix-var (gensym)) internal-form row-var col-var) (cond ((symbolp var) (setq row-var (gensym) col-var (gensym) internal-form `(let ((,var (aref ,matrix-var ,row-var ,col-var))) ,@body))) ((and (listp var) (= (length var) 2)) (setf internal-form `(progn ,@body) row-var (first var) col-var (second var))) ((and (listp var) (= (length var) 3)) (setq row-var (second var) col-var (third var) internal-form `(let ((,(first var) (aref ,matrix-var ,row-var ,col-var))) ,@body))) (t (error "Malformed VAR spec: ~s" var))) `(loop with ,matrix-var = ,matrix for ,row-var below (array-dimension ,matrix-var 0) do (loop for ,col-var below (array-dimension ,matrix-var 1) do ,internal-form) finally (return ,retval)))) (defun mapmatrix (function matrix) "Execute FUNCTION for each element in MATRIX. Return a new matrix made of the return values of FUNCTION. FUNCTION should be a function of three arguments: the VALUE, the ROW, and the COLUMN." (let ((new-mat (make-array (array-dimensions matrix)))) (domatrix ((elem row col) matrix new-mat) (setf (aref new-mat row col) (funcall function elem row col))))) ;; Matrix subroutines (defun minor (mat i j) "Find the minor of MAT for I and J." (destructuring-bind (height width) (array-dimensions mat) (let ((minor (make-array (list (1- height) (1- width))))) (dotimes (row height minor) (dotimes (col width) (unless (or (= row i) (= col j)) (let ((out-row (if (> row i) (1- row) row)) (out-col (if (> col j) (1- col) col))) (setf (aref minor out-row out-col) (aref mat row col))))))))) (defun cofactor-sgn (i j) "Return the sign of the cofactor at I and J." (expt -1 (+ i j))) (defun cofactor (mat i j) "Find the cofactor for I and J in MAT." (* (cofactor-sgn i j) (det (minor mat i j)))) (defun first-column-cofactors (mat) "Find the cofactors for the first column of MAT." (let* ((height (array-dimension mat 0)) (out-arr (make-array height))) (dotimes (i height out-arr) (setf (aref out-arr i) (cofactor mat i 0))))) (defun det2x2 (mat) "Find the determinate of a 2x2 matrix MAT." (let ((a (aref mat 0 0)) (b (aref mat 0 1)) (c (aref mat 1 0)) (d (aref mat 1 1))) (- (* a d) (* b c)))) (defun det (mat &key first-column-cofactors) "Find the determinant of MAT. If the cofactors for the first column have already been calculated, they can be supplied in FIRST-COLUMN-COFACTORS." (destructuring-bind (height width) (array-dimensions mat) (if (and (= height 2) (= width 2)) (det2x2 mat) (loop for i below height when first-column-cofactors summing (* (aref mat i 0) (aref first-column-cofactors i)) else summing (* (aref mat i 0) (cofactor mat i 0)))))) (defun invert2x2 (mat) "Invert the 2x2 matrix MAT." (let ((a (aref mat 0 0)) (b (aref mat 0 1)) (c (aref mat 1 0)) (d (aref mat 1 1)) (ood (/ (det2x2 mat)))) (make-array '(2 2) :initial-contents (list (list (* ood d) (* ood (- b))) (list (* ood (- c)) (* ood a)))))) (defun invert (mat) "Invert MAT. This will signal `division-by-zero' if MAT is singular." (destructuring-bind (height width) (array-dimensions mat) (if (and (= width 2) (= height 2)) (invert2x2 mat) (let* ((first-column-cofactors (first-column-cofactors mat)) (one-over-det (/ (det mat :first-column-cofactors first-column-cofactors)))) (mapmatrix (lambda (val row col) (declare (ignorable val)) ;; this calculates 1/det * adjugate[i][j] (* one-over-det (if (and first-column-cofactors (zerop row)) (aref first-column-cofactors col) (cofactor mat col row)))) mat))))) (defun transpose (mat) "Transpose MAT." (let ((out-mat (make-array (reverse (array-dimensions mat))))) (domatrix ((val row col) mat out-mat) (setf (aref out-mat col row) val)))) (defun norm (vec) "Return the norm of VEC." (sqrt (reduce (lambda (sum elt) (+ sum (* elt elt))) vec :initial-value 0))) (defun dot-row-col (mat1 mat2 row col) "Take the dot (scalar) product of ROW of MAT1 and COL of MAT2." (let ((sum 0)) (dotimes (n (array-dimension mat2 0) sum) (setq sum (+ sum (* (aref mat1 row n) (aref mat2 n col))))))) (defun *mm (mat1 mat2) "Multiply MAT1 by MAT2." (assert (= (array-dimension mat1 1) (array-dimension mat2 0)) (mat1 mat2) "Cannot multiply ~s by ~s." mat1 mat2) (let* ((width (array-dimension mat1 0)) (height (array-dimension mat2 1)) (out-mat (make-array (list height width)))) (dotimes (i height out-mat) (dotimes (j width) (let ((dot (dot-row-col mat1 mat2 i j))) (setf (aref out-mat i j) dot)))))) (defun *mv (mat vec) "Multiply MAT by VEC." (assert (= (array-dimension mat 1) (length vec)) (mat vec) "Cannot multiply ~s by ~s." mat vec) (let* ((width (array-dimension mat 1)) (height (array-dimension mat 0)) (out-vec (make-array height))) (dotimes (row height out-vec) (setf (aref out-vec row) (loop for col below width summing (* (aref vec col) (aref mat row col))))))) (defun *vm (vec mat) "Multiply VEC by MAT." (assert (= (array-dimension mat 0) (length vec)) (vec mat) "Cannot multiply ~s by ~s." vec mat) (let* ((width (array-dimension mat 1)) (height (array-dimension mat 0)) (out-vec (make-array height))) (dotimes (row height out-vec) (setf (aref out-vec row) (loop for col below width summing (* (aref vec col) (aref mat col row))))))) (defun dot (vec1 vec2) "Compute the dot product (scalar product) of VEC1 and VEC2." (assert (= (length vec1) (length vec2)) (vec1 vec2) "Cannot multiply ~s by ~s." vec1 vec2) (loop for i below (length vec1) summing (* (aref vec1 i) (aref vec2 i)))) (defun +mm (mat1 mat2) "Add MAT1 to MAT2." (assert (equal (array-dimensions mat1) (array-dimensions mat2)) (mat1 mat2) "Cannot add ~s and ~s." mat1 mat2) (mapmatrix (lambda (val row col) (declare (ignorable row col)) (+ val (aref mat2 row col))) mat1)) (defun +vv (vec1 vec2) "Add VEC1 to VEC2." (assert (= (length vec1) (length vec2)) (vec1 vec2) "Cannot add ~s and ~s." vec1 vec2) (let ((sum (make-array (length vec1)))) (dotimes (i (length vec1) sum) (setf (aref sum i) (+ (aref vec1 i) (aref vec2 i)))))) (defun -mm (mat1 mat2) "Subtract MAT2 from MAT1." (assert (equal (array-dimensions mat1) (array-dimensions mat2)) (mat1 mat2) "Cannot subtract ~s and ~s." mat2 mat1) (mapmatrix (lambda (val row col) (declare (ignorable row col)) (- val (aref mat2 row col))) mat1)) (defun -vv (vec1 vec2) "Subtract VEC2 from VEC1." (assert (= (length vec1) (length vec2)) (vec1 vec2) "Cannot subtract ~s from ~s." vec2 vec1) (let ((sum (make-array (length vec1)))) (dotimes (i (length vec1) sum) (setf (aref sum i) (- (aref vec1 i) (aref vec2 i)))))) (defun *ms (mat scalar) "Multiply MAT by SCALAR." (mapmatrix (lambda (val row col) (declare (ignorable row col)) (* val scalar)) mat)) (defun *vs (vec scalar) "Multiply VEC by SCALAR." (map 'vector (lambda (elt) (* elt scalar)) vec)) (defun /ms (mat scalar) "Divide MAT by SCALAR." (*ms mat (/ scalar))) (defun /vs (vec scalar) "Divide VEC by SCALAR." (*vs vec (/ scalar))) (defun mconj (mat) "Return the conjugate of MAT." (mapmatrix (lambda (val row col) (declare (ignorable row col)) (conjugate val)) mat)) (defun vconj (vec) "Return the conjugate of VEC." (map 'vector 'conjugate vec)) (defun squarep (mat) "Return non-nil if MAT is a square matrix." (and (= (array-rank mat) 2) (apply '= (array-dimensions mat)))) (defun singularp (mat) "Return non-nil if MAT is singular." (zerop (det mat))) (defun mtrace (mat) "Return the trace of MAT." (assert (squarep mat) (mat) "Not a square matrix: ~s" mat) (loop for i below (array-dimension mat 0) summing (aref mat i i))) (defun make-identity-matrix (n) "Return an N by N identity matrix." (let ((mat (make-array (list n n)))) (dotimes (i n mat) (setf (aref mat i i) 1)))) (defun copy-matrix (mat) "Return a copy of MAT." (mapmatrix (lambda (val row col) (declare (ignorable row col)) val) mat)) (defun nswap-rows (mat r1 r2) "Swap rows R1 and R2 in mat. R1 and R2 are 0-indexed. This operation is destructive." (let ((width (array-dimension mat 1))) (dotimes (i width mat) (rotatef (aref mat r1 i) (aref mat r2 i))))) (defun swap-rows (mat r1 r2) "Swap rows R1 and R2 in mat. R1 and R2 are 0-indexed. This operation is not destructive." (mapmatrix (lambda (val row col) (cond ((= r1 row) (aref mat r2 col)) ((= r2 row) (aref mat r1 col)) (t val))) mat)) (defun nscale-row (mat row scale) "Replace ROW in MAT with itself multiplied by SCALE. ROW is 0-indexed." (let ((width (array-dimension mat 1))) (dotimes (i width mat) (setf (aref mat row i) (* scale (aref mat row i)))))) (defun scale-row (mat row scale) "Like `nscale-row', but copy MAT." (mapmatrix (lambda (val irow col) (declare (ignorable col)) (if (= irow row) (* val scale) val)) mat)) (defun nreplace-row-with-sum (mat r1 r2 &key (scale 1)) "Replace row R2 in MAT with R1 + SCALE * R2. ROW is 0-indexed." (let ((width (array-dimension mat 1))) (dotimes (i width mat) (incf (aref mat r1 i) (* scale (aref mat r2 i)))))) (defun replace-row-with-sum (mat r1 r2 &key (scale 1)) "Like `nreplace-row-with-sum', but copy MAT." (mapmatrix (lambda (val row col) (if (= row r1) (+ val (* scale (aref mat r2 col))) val)) mat)) (defun tensor-mm (m1 m2) "Calculate the tensor product of M1 and M2." (let* ((height (* (array-dimension m1 0) (array-dimension m2 0))) (width (* (array-dimension m1 1) (array-dimension m2 1))) (out-mat (make-array (list height width)))) (dotimes (row height out-mat) (dotimes (col width) (setf (aref out-mat row col) (* (aref m1 (floor row (array-dimension m2 0)) (floor col (array-dimension m2 1))) (aref m2 (mod row (array-dimension m2 0)) (mod col (array-dimension m2 1))))))))) (defun tensor-vv (v1 v2) "Calculate the tensor product of V1 and V2." (apply 'concatenate 'vector (map 'list (lambda (elt) (*vs v2 elt)) v1))) (defun round-to-place (num places &key (base 10)) "Round NUM to PLACES places in BASE." (if (complexp num) (let ((real (round-to-place (realpart num) places :base base)) (imag (round-to-place (imagpart num) places :base base))) (if (zerop imag) real (complex real imag))) (let ((scale (expt base places))) (float (/ (floor (+ (* num scale) 1/2)) scale))))) (defun round-vector (vec places) "Round each entry in VEC to PLACES." (map 'vector (lambda (elt) (round-to-place elt places)) vec)) (defun round-matrix (mat places) "Round each entry in MAT to PLACES." (mapmatrix (lambda (val row col) (declare (ignorable row col)) (round-to-place val places)) mat)) (defun count-digits (num &key (base 10)) "Count the number of digits in NUM. If NUM is zero, return 1. If NUM is negative, return the number of digits in its absolute value." (if (zerop num) 1 ;; throw out the extra values (values (floor (1+ (log (abs num) base)))))) (defun build-float (int dec) "Create a float with integer part INT and decimal part DEC." (* (if (zerop int) 1 (signum int)) (+ (abs int) (/ dec (expt 10 (count-digits dec)))))) (defun mexp (mat &key (times 100)) "Calculate exp(MAT) using a Taylor series. The calculation is performed TIMES times." (assert (squarep mat) (mat) "Matrix must be square: ~s" mat) (loop for i from 0 to times for numer = (make-identity-matrix (array-dimension mat 0)) then (*mm numer mat) for denom = 1 then (* denom i) for res = (/ms numer denom) then (+mm res (/ms numer denom)) finally (return res))) (defun wholep (num) "Return non-nil if NUM is a whole number." (or (integerp num) (and (zerop (imagpart num)) ;; a complex number is not whole (zerop (second (multiple-value-list (floor (realpart num)))))))) (defun mexpt (mat power) "Calculate MAT to the POWERth power. POWER must be an integer." (assert (wholep power) (power) "Not a whole number: ~s" power) (let ((acc (make-identity-matrix (array-dimension mat 0)))) (dotimes (i (floor power) acc) (setq acc (*mm acc mat))))) (defun matrix= (m1 m2) "Return non-nil if each element of M1 and M2 are equal." (and (= (array-rank m1) (array-rank m2)) (loop for d1 in (array-dimensions m1) for d2 in (array-dimensions m2) unless (= d1 d2) do (return nil) finally (return t)) (domatrix ((row col) m1 t) (unless (= (aref m1 row col) (aref m2 row col)) (return-from matrix=))))) (defun vector= (v1 v2) "Return non-nil if each element of V1 and V2 are equal." (and (= (length v1) (length v2)) (dotimes (i (length v1) t) (unless (= (aref v1 i) (aref v2 i)) (return-from vector=)))))